It has been demonstrated that activation of autophagy is involved in the development of pulmonary arterial hypertension (PAH). Recent studies have shown that cytosolic forkhead box protein O1 (FoxO1) activates autophagy in cancer cells. Paclitaxel has been found to potentially reverse PAH progression. However, the role of FoxO1 and the effects of paclitaxel on autophagy in the pathogenesis of PAH remain unknown. PAH was generated by intraperitoneal injection of monocrotaline (MCT) to rats. The right ventricular systolic pressure (RVSP), the right ventricle hypertrophy index (RV/LV+S), and the percentage of medial wall thickness (%MT) were used to detect the development of PAH. Hematoxylin and eosin staining was performed to measure pulmonary vascular remodeling. The protein level, phosphorylation, and nucleus translocation of FoxO1 and the levels of LC3A, LC3B, and Beclin-1 were examined by immunoblotting. The results showed that in spite of reduced expression of FoxO1, elevated phosphorylation of FoxO1 caused most of FoxO1 accumulating in cytosolic fraction in MCT-PAH rats. Autophagy was also activated in the MCT-PAH group. In cultured rat pulmonary arterial smooth muscle cells (PASMCs), knockdown of FoxO1 markedly blocked autophagy activation, indicating that elevation of cytosolic FoxO1 stimulates autophagy activation. Treatment of PAH rats with paclitaxel reduced FoxO1 phosphorylation and increased FoxO1 nuclear accumulation, despite increased FoxO1 expression, therefore suppressed autophagy, finally reduced elevated RVSP, RV/LV+S, and %MT in MCT-induced PAH. Taken together, paclitaxel inhibits pulmonary vascular remodeling by FoxO1-mediated autophagy suppression, suggesting that paclitaxel might be a novel therapeutic agent for the prevention and treatment of PAH.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-019-01615-4DOI Listing

Publication Analysis

Top Keywords

pulmonary arterial
12
foxo1
11
autophagy
9
arterial hypertension
8
foxo1-mediated autophagy
8
pah
8
pulmonary vascular
8
vascular remodeling
8
autophagy activation
8
treatment pah
8

Similar Publications

Background: Autosomal recessive cutis laxa type 1B (ARCL1B) is an extremely rare disease characterized by severe systemic connective tissue abnormalities, including cutis laxa, aneurysm and fragility of blood vessels, birth fractures and emphysema. The severity of this disease ranges from perinatal death to manifestations compatible with survival. To date, no cases have been reported in the Chinese population.

View Article and Find Full Text PDF

Clonal hematopoiesis of indeterminate potential and the risk of pulmonary embolism: an observational study.

EClinicalMedicine

August 2024

Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Guangzhou, China.

Background: Pulmonary embolism causes a substantial burden of morbidity and mortality. Although there are several well-established risk factors for pulmonary embolism, a substantial proportion of cases cannot be attributed to provoked or known risk factors. Accumulating evidence has suggested an association of clonal hematopoiesis of indeterminate potential (CHIP) with the risk of arterial thromboembolism.

View Article and Find Full Text PDF

Introduction: The critical role played by vascular dysfunction and ineffective angiogenesis in the pathophysiology of systemic sclerosis (SSc) suggests that circulating biomarkers reflecting these alterations may be useful in the clinical evaluation of this patient group. We sought to address this issue by conducting a systematic review and meta-analysis of studies investigating a such candidate biomarker, endostatin, an endogenous glycoprotein exerting anti-angiogenic effects, in SSc patients and healthy controls.

Methods: A literature search was conducted in the electronic databases Web of Science, PubMed, and Scopus from inception to 27 May 2024.

View Article and Find Full Text PDF

Pediatric Pulmonary Arterial Hypertension; is it Possible to Predict its Outcome?

J Saudi Heart Assoc

December 2024

Department of Pediatrics, Pediatric Cardiology Division, Specialized Pediatric Hospital, Cairo University, Egypt.

Objectives: To assess the outcome of pediatric pulmonary arterial hypertension (PAH) and to identify the predictors of morbidity and mortality of this progressive disease.

Patients And Methods: This prospective observational cohort study was conducted on consecutive pediatric patients with PAH. Medical history was taken with a grading of the WHO functional class as well as the serum N-terminal pro-BNP (NT pro-BNP), 6 min' walk test (6MWT), and echocardiography at the initial assessment and at follow-up.

View Article and Find Full Text PDF

Background: Pulmonary arterial hypertension (PAH) is a rare but severe and life-threatening condition that primarily affects the pulmonary blood vessels and the right ventricle of the heart. The limited availability of human tissue for research ~most of which represents only end-stage disease~ has led to a reliance on preclinical animal models. However, these models often fail to capture the heterogeneity and complexity of the human condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!