Wingless modulates activator protein-1-mediated tumor invasion.

Oncogene

Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.

Published: May 2019

Metastasis begins with a subset of local tumor cells acquiring the potential to invade into surrounding tissues, and remains to be a major obstacle for cancer treatments. More than 90% of cancer patients died from tumor metastasis, instead of primary tumor growth. The canonical Wnt/β-catenin pathway plays essential roles in promoting tumor formation, yet its function in regulating tumor metastasis and the underlying mechanisms remain controversial. Here we employed well-established Drosophila tumor models to investigate the regulating mechanism of Wingless (Wg) pathway in tumor invasion. Our results showed that Wg signaling is necessary and sufficient for cell polarity disruption-induced cell migration and molecular changes reminiscent of epithelial-mesenchymal transition (EMT). Moreover, reducing Wg signaling suppressed lgl/Ras-induced tumor invasion, and cooperation between Arm and Ras is sufficient to induce tumor invasion. Mechanistically, we found that cell polarity disruption activates JNK signaling, which in turn upregulate wg expression through transcription factor activator protein-1 (AP-1). We identified a consensus AP-1 binding site located in the 2 intron of wg, and confirmed that it is essential for AP-1 induced wg transcription both in vitro and in vivo. Lastly, we confirmed that the transcriptional activation of WNT by AP-1 is conserved in human cancer cells. These evidences reveal a positive role of Wnt/β-catenin pathway in tumor invasion, and provide a conserved mechanism that connects JNK and Wnt signaling in regulating tumor progression.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41388-018-0629-xDOI Listing

Publication Analysis

Top Keywords

tumor invasion
20
tumor
12
tumor metastasis
8
wnt/β-catenin pathway
8
regulating tumor
8
pathway tumor
8
cell polarity
8
invasion
5
wingless modulates
4
modulates activator
4

Similar Publications

NRG1 Fusions: The New Kid on the Block.

Curr Oncol Rep

January 2025

Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Road NW, Washington, DC, 20007, USA.

Purpose Of Review: Neuregulin 1 (NRG1) fusions are rare but actionable oncogenic drivers that occur in a variety of tumor types, including non-small cell lung cancer (NSCLC). These fusions lead to pathophysiologic activation of HER signaling pathways, promoting tumor growth, invasion, and metastasis. Current evidence suggests that NRG1 fusion-positive NSCLC does not respond well to conventional treatments such as immunotherapy and chemotherapy.

View Article and Find Full Text PDF

Minimally invasive biomarkers for triaging lung nodules-challenges and future perspectives.

Cancer Metastasis Rev

January 2025

Saliva and Liquid Biopsy Translational Laboratory, Institute for Biomedicine and Glycomics (IBG), Griffith University, Brisbane, 4111, Australia.

CT chest scans are commonly performed worldwide, either in routine clinical practice for a wide range of indications or as part of lung cancer screening programs. Many of these scans detect lung nodules, which are small, rounded opacities measuring 8-30 mm. While the concern about nodules is that they may represent early lung cancer, in screening programs, only 1% of such nodules turn out to be cancer.

View Article and Find Full Text PDF

Purpose: Low-dose CT (LDCT) screening effectively reduces lung adenocarcinoma (LUAD) mortality. However, accurately evaluating the malignant potential of indeterminate lung nodules remains a challenge. Carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6), a potential biomarker for distinguishing benign pulmonary nodules from LUAD, may be leveraged for noninvasive positron emission tomography (PET) imaging to aid LUAD diagnosis.

View Article and Find Full Text PDF

Objectives: To characterize the radiological findings of desmoid-type fibromatosis (DF).

Methods: This two-institution retrospective study included 152 patients with pathologically confirmed DF who underwent computed tomography (CT), magnetic resonance imaging (MRI), or 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET)/CT between January 2001 and February 2024. Two board-certified radiologists independently evaluated the CT, MRI, and FDG-PET/CT findings, and a third board-certified radiologist resolved discrepancies.

View Article and Find Full Text PDF

The novel piperine derivative MHJ-LN inhibits breast cancer by inducing apoptosis via p53 activation.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.

Triple-negative breast cancer (TNBC) is characterized by high aggressiveness and recurrence rates due to the lack of effective treatment options. Piperine, a natural alkaloid extracted from black pepper, has demonstrated significant anticancer potential in recent years. Therefore, developing piperine derivatives to enhance its anticancer effects holds critical clinical significance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!