Circadian rhythm is an autoregulatory rhythm, which is sustained by various mechanisms. The nucleocytoplasmic shuttling of BMAL1 is essential for CLOCK translocation between cytoplasm and nucleus and maintenance of the correct pace of the circadian clock. Here we showed that RAE1 and NUP98 can promote the degradation of BMAL1 and CLOCK. Knockdown of RAE1 and NUP98 suppressed BMAL1 shuttling, leading to cytoplasm accumulation of CLOCK. Furthermore, Chip assay showed that knockdown of RAE1 and NUP98 can enhance the interaction between CLOCK: BMAL1 and E-box region in the promoters of Per2 and Cry1 while reducing its transcription activation activity. Our present study firstly revealed that RAE1 and NUP98 are critical regulators for BMAL1 shuttling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347605PMC
http://dx.doi.org/10.1038/s41419-019-1346-2DOI Listing

Publication Analysis

Top Keywords

rae1 nup98
16
bmal1 shuttling
12
clock bmal1
8
knockdown rae1
8
bmal1
7
clock
6
rae1
5
rae1 promotes
4
promotes bmal1
4
shuttling
4

Similar Publications

Despite being mostly neglected in structural biology, the C-terminal Regions (CTRs) are studied to be multifunctional in humans as well as in viruses. Previously, SARS-CoV-2 Spike and NSP1 proteins' CTRs are observed to be disordered, and experimental evidence showed a gain of structure properties in different physiological environments. In this line, we have investigated the structural dynamics of CTR (residues 38-61) of SARS-CoV-2 ORF6 protein, disrupting bidirectional transport between the nucleus and cytoplasm.

View Article and Find Full Text PDF

SARS-CoV-2 Orf6 is positioned in the nuclear pore complex by Rae1 to inhibit nucleocytoplasmic transport.

Mol Biol Cell

May 2024

Department of Cell Biology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada T6G 2H7.

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) accessory protein Orf6 works as an interferon antagonist, in part, by inhibiting the nuclear import activated p-STAT1, an activator of interferon-stimulated genes, and the export of the poly(A) RNA. Insight into the transport regulatory function of Orf6 has come from the observation that Orf6 binds to the nuclear pore complex (NPC) components: Rae1 and Nup98. To gain further insight into the mechanism of Orf6-mediated transport inhibition, we examined the role of Rae1 and Nup98.

View Article and Find Full Text PDF

Open Reading Frame 6 (ORF6) proteins, which are unique to severe acute respiratory syndrome-related (SARS) coronavirus, inhibit the classical nuclear import pathway to antagonize host antiviral responses. Several alternative models were proposed to explain the inhibitory function of ORF6 [H. Xia .

View Article and Find Full Text PDF

Impact of SARS-CoV-2 ORF6 and its variant polymorphisms on host responses and viral pathogenesis.

Cell Host Microbe

October 2023

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Electronic address:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes several proteins that inhibit host interferon responses. Among these, ORF6 antagonizes interferon signaling by disrupting nucleocytoplasmic trafficking through interactions with the nuclear pore complex components Nup98-Rae1. However, the roles and contributions of ORF6 during physiological infection remain unexplored.

View Article and Find Full Text PDF

Virus Infection and mRNA Nuclear Export.

Int J Mol Sci

August 2023

Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai 200031, China.

Gene expression in eukaryotes begins with transcription in the nucleus, followed by the synthesis of messenger RNA (mRNA), which is then exported to the cytoplasm for its translation into proteins. Along with transcription and translation, mRNA export through the nuclear pore complex (NPC) is an essential regulatory step in eukaryotic gene expression. Multiple factors regulate mRNA export and hence gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!