Atrial fibrillation (AF) rat models and rat cardiac fibroblasts (CFs) with overexpressed or inhibited miR-10a were used to investigate the possible role of miR-10a-mediated transforming growth factor-β (TGF-β1)/Smads signaling in cardiac fibrosis and fibroblast proliferation in rats with AF. Gene ontology and pathway enrichment analyses were used to identify the possible function of miR-10a in cardiac fibrosis. The results showed that overexpressed miR-10a significantly prolonged the duration of AF, further elevated the collagen volume fraction (CVF), and increased the viability of CFs in AF rats; these findings were in contrast with the findings for rats with inhibition of miR-10a (all <0.05). Moreover, miR-10a overexpression could promote miR-10a, collagen-I, collagen III, α-SMA, and TGF-β1 protein expression and increase the levels of hydroxyproline but reduced Smad7 protein expression in atrial tissues and CFs in AF rats. Not surprisingly, inhibiting miR-10a led to completely contrasting results (all <0.05). Moreover, TGF-β1 treatment could reverse the inhibitory effect of miR-10a down-regulation on cardiac fibrosis in CFs. Bioinformatics analysis and luciferase reporter assay results demonstrated that miR-10a bound directly to the 3'-UTR of BCL6, which is involved in cell growth and proliferation. Thus, our study indicate that down-regulation of miR-10a may inhibit collagen formation, reduce atrial structure remodeling, and decrease proliferation of CFs, eventually suppressing cardiac fibrosis in AF rats via inhibition of the TGF-β1/Smads signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6367129PMC
http://dx.doi.org/10.1042/BSR20181931DOI Listing

Publication Analysis

Top Keywords

cardiac fibrosis
12
tgf-β1/smads signaling
8
fibroblast proliferation
8
cardiac
5
modulation mir-10a-mediated
4
mir-10a-mediated tgf-β1/smads
4
signaling atrial
4
atrial fibrillation-induced
4
fibrillation-induced cardiac
4
fibrosis cardiac
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!