Magnetic control of graphitic microparticles in aqueous solutions.

Proc Natl Acad Sci U S A

Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom;

Published: February 2019

Graphite is an inexpensive material with useful electrical, magnetic, thermal, and optical properties. It is also biocompatible and used universally as a substrate. Micrometer-sized graphitic particles in solution are therefore ideal candidates for novel lab-on-a-chip and remote manipulation applications in biomedicine, biophysics, chemistry, and condensed-matter physics. However, submerged graphite is not known to be amenable to magnetic manipulation, the optimal manipulation method for such applications. Here, we exploit the diamagnetism of graphite and demonstrate contactless magnetic positioning control of graphitic microflakes in diamagnetic aqueous solutions. We develop a theoretical model for magnetic manipulation of graphite microflakes and demonstrate experimentally magnetic transport of such particles over distances [Formula: see text] with peak velocities [Formula: see text] in inhomogeneous magnetic fields. We achieve fully biocompatible transport for lipid-coated graphite in NaCl aqueous solution, paving the way for previously undiscovered biomedical applications. Our results prove that micrometer-sized graphite can be magnetically manipulated in liquid media.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377480PMC
http://dx.doi.org/10.1073/pnas.1817989116DOI Listing

Publication Analysis

Top Keywords

control graphitic
8
aqueous solutions
8
magnetic manipulation
8
[formula text]
8
magnetic
7
graphite
6
magnetic control
4
graphitic microparticles
4
microparticles aqueous
4
solutions graphite
4

Similar Publications

Probing the Active Nitrogen Species in Nitrogen-Doped Carbon Nanozymes for Enhanced Oxidase-Like Activity.

Small

January 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

Nitrogen doping emerges as a potent approach to enhance the oxidase-like activity of carbon nanozymes. However, the unclear knowledge of the active nitrogen species within nitrogen-doped carbon nanozymes hinders the advancement of high-performance carbon nanozymes. Herein, a group of nitrogen-doped carbon (N/C) nanozymes with controllable nitrogen dopants are successfully synthesized via a dicyandiamide-assisted pyrolysis method.

View Article and Find Full Text PDF

Control of water for high-yield and low-cost sustainable electrochemical synthesis of uniform monolayer graphene oxide.

Nat Commun

January 2025

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China.

With the rapid development of graphene industry, low-cost sustainable synthesis of monolayer graphene oxide (GO) has become more and more important for many applications such as water desalination, thermal management, energy storage and functional composites. Compared to the conventional chemical oxidation methods, water electrolytic oxidation of graphite-intercalation-compound (GIC) shows significant advantages in environmental-friendliness, safety and efficiency, but suffers from non-uniform oxidation, typically ~50 wt.% yield with ~50% monolayers.

View Article and Find Full Text PDF

Activated Graphite with Richly Oxygenated Surface from Spent Lithium-Ion Batteries for Microwave Absorption.

Small

January 2025

School of Materials and Physics & Center of Mineral Resource Waste Recycling, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.

Designing spent graphite anodes from lithium-ion batteries (LIBs) for applications beyond regenerated batteries offers significant potential for promoting the recycling of spent LIBs. The battery-grade graphite, characterized by a highly graphitized structure, demonstrates excellent conductive loss capabilities, making it suitable for microwave absorption. During the Li-ion intercalation and deintercalation processes in battery operation, the surface layer of spent graphite (SG) becomes activated, forming oxygen-rich functional groups that enhance the polarization loss mechanism.

View Article and Find Full Text PDF

Remarkable improvement in drilling fluid properties with graphitic-carbon nitride for enhanced wellbore stability.

Heliyon

January 2025

Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.

This study examines the viability of using graphitic-Carbon Nitride (g-CN) nanomaterial as shale stabilizer drilling fluid additive having applications in the oil and gas wells drilling. Shale stability is important especially when drilling horizontal and extended reach wells with water-based muds (WBM) to tap unconventional reservoirs namely shale oil and shale gas. For this study, the g-CN nanomaterial was produced by melamine pyrolysis, and characterized by X-Ray Diffraction, Scanning Electron Microscopy and Fourier Transform Infrared spectroscopy techniques.

View Article and Find Full Text PDF

Moyamoya is a non-atherosclerotic intracranial steno-occlusive condition that places patients at high risk for ischaemic stroke. Randomized trials of surgical revascularization demonstrating efficacy in ischaemic moyamoya have not been performed, and as such, biomarkers of parenchymal haemodynamic impairment are needed to assist with triage and evaluate post-surgical response. In this prospective study, we test the hypothesis that parenchymal cerebrovascular reactivity (CVR) metrics in response to a fixed-inspired 5% carbon dioxide challenge correlate with recent focal ischaemic symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!