Large-scale neurite pruning, the developmentally regulated degeneration of axons or dendrites, is an important specificity mechanism during neuronal circuit formation. Pruning is usually restricted to single neurite branches and can occur by local degeneration or retraction. How this spatial regulation is achieved, and what triggers degeneration locally, are still poorly understood. At the cellular level, pruning involves local cytoskeleton disassembly before branch removal. Recent evidence suggests that microtubule disassembly is the local trigger and that the specific local microtubule organization of axons or dendrites determines where and how neurites degenerate. Based on these data, we propose a general model for spatial pruning regulation by microtubules and discuss how microtubule-associated proteins such as Tau could contribute to these regulatory aspects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tcb.2019.01.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!