Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Xanthomonas arboricola pv. juglandis (Xaj) is the etiological agent of walnut (Juglans regia L.) bacterial blight (WBB), and has been associated to other walnut emerging diseases, namely brown apical necrosis (BAN) and vertical oozing canker (VOC), altogether severely affecting the walnut production worldwide. Despite the research efforts carried out to disclose Xaj genetic diversity, reliable molecular methods for rapid identification of Xaj isolates and culture-independent detection of Xaj in infected plant samples are still missing. In this work, we propose nine novel specific DNA markers (XAJ1 to XAJ9) selected by dedicated in silico approaches to identify Xaj isolates and detect these bacteria in infected plant material. To confirm the efficacy and specificity of these markers, dot blot hybridization was carried out across a large set of xanthomonads. This analysis, which confirmed the pathovar specificity of these markers, allowed to identify four broad-range markers (XAJ1, XAJ4, XAJ6, and XAJ8) and five narrow-range markers (XAJ2, XAJ3, XAJ5, XAJ7, and XAJ9), originating 12 hybridization patterns (HP1 to HP12). No evident relatedness was observed between these hybridization patterns and the geographic origin from which the isolates were obtained. Interestingly, four isolates that clustered together according the gyrB phylogenetic analysis (CPBF 1507, 1508, 1514, and 1522) presented the same hybridization pattern (HP11), suggesting that these nine markers might be informative to rapidly discriminate and identify different Xaj lineages. Taking into account that a culture-independent detection of Xaj in plant material has never been described, a multiplex PCR was optimized using markers XAJ1, XAJ6, and XAJ8. This triplex PCR, besides confirming the dot blot data for each of the 52 Xaj, was able to detect Xaj in field infected walnut leaves and fruits. Altogether, these nine Xaj-specific markers allow conciliating the specificity of DNA-detection assays with typing resolution, contributing to rapid detection and identification of potential emergent and acutely virulent Xaj genotypes, infer their distribution, disclose the presence of this phytopathogen on potential alternative host species and improve phytosanitary control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-10-16-1481-RE | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!