Emergent structure-dependent relaxation spectra in viscoelastic fiber networks in extension.

Acta Biomater

312 Church St. SE, Minneapolis, MN 55455, United States. Electronic address:

Published: March 2019

AI Article Synopsis

Article Abstract

Viscoelasticity plays an important role in the mechanical behavior of biological tissues undergoing dynamic loading. Exploring viscoelastic relaxation spectra of the tissue is essential for predicting its mechanical response. Most load-bearing tissues, however, are also composed of networks of intertwined fibers and filaments of, e.g., collagen, elastin. In this work, we show how non-affine deformations within fiber networks affect the relaxation behavior of the material leading to the emergence of structure-dependent time scales in the relaxation spectra. In particular, we see two different contributions to the network relaxation process: a material contribution due to the intrinsic viscoelasticity of the fibers, and a kinematic contribution due to non-affine rearrangement of the network when different fibers relax at different rates. We also present a computational model to simulate viscoelastic relaxation of networks, demonstrating the emergent time scales and a pronounced dependence of the network relaxation behavior on whether components with different relaxation times percolate the network. Finally, we observe that the simulated relaxation spectrum for Delaunay networks is comparable to that measured experimentally for reconstituted collagen gels by others. STATEMENT OF SIGNIFICANCE: Viscoelasticty plays an important role in the mechanical behavior of biological tissues undergoing dynamic loading. Stress relaxation tests provide a convenient way to explore the viscoelastic behavior of the material, while providing an advantage of interrogating multiple time scales in a single experiment. Most load bearing tissues, however, are composed of networks of intertwined fibers and filaments. In the present study, we analyze how the network structure can affect the viscoelastic relaxation behavior of a tissue leading to the emergence of structure-based time scales in the relaxation spectra.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467080PMC
http://dx.doi.org/10.1016/j.actbio.2019.01.027DOI Listing

Publication Analysis

Top Keywords

relaxation spectra
16
time scales
16
relaxation
12
viscoelastic relaxation
12
relaxation behavior
12
fiber networks
8
plays role
8
role mechanical
8
mechanical behavior
8
behavior biological
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!