Development and use of resistant wheat cultivars is the most practical and economical approach for the control of Fusarium head blight (FHB). In the present study, a population of recombinant inbred lines derived from the cross between 'AC Brio' (a Canadian bread wheat cultivar moderately susceptible to FHB) and 'TC 67' (an FHB-resistant cultivar derived from Triticum timopheevii) was used to map quantitative trait loci (QTL) for FHB resistance using microsatellite molecular markers. Multiple interval mapping detected several QTL for FHB resistance on the chromosomes 5AL and 6A. The QTL detected in the marker interval of cfd6.1-barc48 on chromosome 5AL explained 10.9, 5.2, and 7.8% of phenotypic variation for disease incidence (type I resistance), disease severity (a combination of type I and type II resistance), and Fusarium-damaged kernels (FDK) (type IV resistance) under field conditions, respectively. The second QTL mapped to 5AL, in the marker interval of cfd39-cfa2185, explained 19.4 and 20.6% of phenotypic variation for FDK under field conditions and disease severity in the greenhouse (type II resistance), respectively. The QTL located on chromosome 6A conferred resistance to disease incidence and severity under field conditions and to disease severity in the greenhouse, explaining 6.8 to 11.8% of phenotypic variation for these traits. Several QTL for agronomic traits were also mapped in this study, including one and two QTL to the chromosomes 2A and 5AL, respectively, all for plant height, and two QTL to chromosome 6A for plant height and flowering date, respectively. The 5AL QTL for FHB resistance mapped in the marker interval of cfd39-cfa2185 in the present study is a novel QTL that originated from T. timopheevii and is reported here for the first time. Further validation of this QTL is required for wheat breeding programs to enhance resistance levels to FHB.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-02-16-0144-REDOI Listing

Publication Analysis

Top Keywords

type resistance
16
qtl
12
qtl fhb
12
fhb resistance
12
marker interval
12
phenotypic variation
12
disease severity
12
field conditions
12
resistance
10
fusarium head
8

Similar Publications

ESBL- and pAmpC-producing Enterobacterales from Swedish dogs and cats 2017-2021: a retrospective study.

Acta Vet Scand

January 2025

Department of Animal Health and Antibiotic Strategies, Swedish Veterinary Agency, Uppsala, Sweden.

Background: Antibiotic resistant bacteria are a threat to both human and animal health. Of special concern are resistance mechanisms that are transmissible between bacteria, such as extended-spectrum beta-lactamases (ESBL) and plasmid-mediated AmpC (pAmpC). ESBL/AmpC resistance is also of importance as it confers resistance to beta-lactam antibiotics including third generation cephalosporins.

View Article and Find Full Text PDF

Background: A significant overlap in the pathophysiological features of polycystic ovary syndrome (PCOS) and type 2 diabetes mellitus (T2DM) has been reported; and insulin resistance is considered a central driver in both. The expression and hepatic clearance of insulin and subsequent glucose homeostasis are mediated by TCF7L2 via Wnt signaling. Studies have persistently associated TCF7L2 genetic variations with T2DM, however, its results on PCOS are sparse and inconsistent.

View Article and Find Full Text PDF

Background: Rectal cancer is a highly heterogeneous gastrointestinal tumor, and the prognosis for patients with treatment-resistant and metastatic rectal cancer remains poor. Mitophagy, a type of selective autophagy that targets mitochondria, plays a role in promoting or inhibiting tumors; however, the importance of mitophagy-related genes (MRGs) in the prognosis and treatment of rectal cancer is unclear.

Methods: In this study, we used the differentially expressed genes (DEGs) and MRGs from the TCGA-READ dataset to identify differentially expressed mitophagy-related genes (MRDEGs).

View Article and Find Full Text PDF

Insulin resistance is a condition characterized by the attenuated biological response in the presence of normal or elevated insulin level and therefore is characterized by the impaired sensitivity to insulin and impaired glucose disposal and utilization. Insulin resistance in brain/Brain insulin resistance (BIR) is accompanied by the various manifestations including alteration in glucose sensing by hypothalamic neurons, impaired sympathetic outflow in response to hypoglycemia, increased ROS production, impaired mitochondrial oxygen consumption in the brain, cognitive deficits and neuronal cell damage. It has been reported that the disrupted insulin signaling is accompanied by the reduced expression of insulin receptor (IR)/insulin receptor substrate 1 (IRS1)/PI3K/AKT and IGF-1 receptor (IGF-1R)/IRS2/PI3K pathways.

View Article and Find Full Text PDF

The I38T substitution in the influenza virus polymerase-acidic (PA) subunit is a resistance marker of concern for treatment with the antiviral baloxavir marboxil (BXM). Thus, monitoring PA/I38T mutations is of clinical importance. Here, we developed three rapid and sensitive assays for the detection and monitoring of the PA/I38T mutation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!