Bacterial tRNA modification synthesis pathways are critical to cell survival under stress and thus represent ideal mechanism-based targets for antibiotic development. One such target is the tRNA-(NG37) methyltransferase (TrmD), which is conserved and essential in many bacterial pathogens. Here we developed and applied a widely applicable, radioactivity-free, bioluminescence-based high-throughput screen (HTS) against 116350 compounds from structurally diverse small-molecule libraries to identify inhibitors of Pseudomonas aeruginosa TrmD ( PaTrmD). Of 285 compounds passing primary and secondary screens, a total of 61 TrmD inhibitors comprised of more than 12 different chemical scaffolds were identified, all showing submicromolar to low micromolar enzyme inhibitor constants, with binding affinity confirmed by thermal stability and surface plasmon resonance. S-Adenosyl-l-methionine (SAM) competition assays suggested that compounds in the pyridine-pyrazole-piperidine scaffold were substrate SAM-competitive inhibitors. This was confirmed in structural studies, with nuclear magnetic resonance analysis and crystal structures of PaTrmD showing pyridine-pyrazole-piperidine compounds bound in the SAM-binding pocket. Five hits showed cellular activities against Gram-positive bacteria, including mycobacteria, while one compound, a SAM-noncompetitive inhibitor, exhibited broad-spectrum antibacterial activity. The results of this HTS expand the repertoire of TrmD-inhibiting molecular scaffolds that show promise for antibiotic development.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsinfecdis.8b00275DOI Listing

Publication Analysis

Top Keywords

antibiotic development
12
trna-ng37 methyltransferase
8
methyltransferase trmd
8
trmd inhibitors
8
targeting bacterial
4
bacterial epitranscriptome
4
epitranscriptome antibiotic
4
development discovery
4
discovery novel
4
novel trna-ng37
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!