A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Environmental heterogeneity explains coarse-scale β-diversity of terrestrial vertebrates in Mexico. | LitMetric

We explored the hypothesis that high β-diversity of terrestrial vertebrates of Mexico is associated with a high environmental heterogeneity (HEH) and identify the drivers of β-diversity at different spatial scales. We used distribution range maps of 2,513 species of amphibians, reptiles, mammals, and birds occurring in Mexico. We estimated β-diversity for each taxon at four spatial scales (grid cells of 2°, 1°, 0.5° and 0.25°) using the multiplicative formula of Whittaker βw. For each spatial scale, we derived 10 variables of environmental heterogeneity among cells based on raw data of temperature, precipitation, elevation, vegetation and soil. We applied conditional autoregressive models (CAR) to identify the drivers of β-diversity for each taxon at each spatial scale. CARs increased in explanatory power from fine-to-coarse spatial scales in amphibians, reptiles and mammals. The heterogeneity in precipitation including both, coefficient of variation (CV) and range of values (ROV), resulted in the most important drivers of β-diversity of amphibians; the heterogeneity in temperature (CV) and elevation (ROV) were the most important drivers of β-diversity for reptiles; the heterogeneity in temperature (ROV) resulted in the most important driver in β-diversity for mammals. For birds, CARs resulted significant at fine scales (grid cells of 0.5° and 0.25°), and the precipitation (ROV and CV), temperature (ROV), and vegetation (H) and soil (H) were heterogeneity variables retained in the model. We found support for the hypothesis of environmental heterogeneity (HEH) for terrestrial vertebrates at coarse scales (grid cell of 2°). Different variables of heterogeneity, mainly abiotic, were significant for each taxon, reflecting physiological differences among terrestrial vertebrate groups. Our study revealed the importance of mountain areas in the geographic patterns of β-diversity of terrestrial vertebrates in Mexico. At a coarse scale, specific variables of heterogeneity can be used as a proxy of β-diversity for amphibians and reptiles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347424PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210890PLOS

Publication Analysis

Top Keywords

environmental heterogeneity
16
terrestrial vertebrates
16
drivers β-diversity
16
β-diversity terrestrial
12
vertebrates mexico
12
spatial scales
12
amphibians reptiles
12
scales grid
12
β-diversity
10
heterogeneity
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!