Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of this work was to develop a novel phantom that supports the construction of highly reproducible phantoms with arbitrary activity distributions for PET imaging. It could offer a methodology for answering questions related to texture measurements in PET imaging. The basic idea is to move a point source on a 3-D trajectory in the field of view, while continuously acquiring data. The reconstruction results in a 3-D activity concentration map according to the pathway of the point source. A 22Na calibration point source was attached to a high precision robotic arm system, where the 3-D movement was software controlled. 3-D activity distributions of a homogeneous cube, a sphere, a spherical shell and a heart shape were simulated. These distributions were used to measure uniformity and to characterize reproducibility. Two potential applications using the lesion simulation method are presented: evaluation in changes of textural properties related to the position in the PET field of view; scanner comparison based on visual and quantitative evaluation of texture features. A lesion with volume of 50x50x50 mm3 can be simulated during approximately 1 hour. The reproducibility of the movement was found to be >99%. The coefficients of variation of the voxels within a simulated homogeneous cube was 2.34%. Based on 5 consecutive and independent measurements of a 36 mm diameter hot sphere, the coefficient of variation of the mean activity concentration was 0.68%. We obtained up to 18% differences within the values of investigated textural indexes, when measuring a lesion in different radial positions of the PET field of view. In comparison of two different human PET scanners the percentage differences between heterogeneity parameters were in the range of 5-55%. After harmonizing the voxel sizes this range reduced to 2-16%. The general activity distributions provided by the two different vendor show high similarity visually. For the demonstration of the flexibility of this method, the same pattern was also simulated on a small animal PET scanner giving similar results, both quantitatively and visually. 3-D motion of a point source in the PET field of view is capable to create an irregular shaped activity distribution with high reproducibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347296 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207658 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!