Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Using first-principles calculations coupled with deformation potential (DP) theory, we have systematically studied the band structure, carrier mobility and strain modulation of monolayer graphane (CH), silicane (SiH) and germanane (GeH) nanoribbons. It is found that all the CH (SiH, GeH) nanoribbons are semiconductor with a wide range of band gap. The carrier mobility results show that the armchair germanane nanoribbon (AGeNR) has the characteristic of p -type semiconductor in electrical conduction because its hole mobility is larger than the electron mobility. While the graphane nanoribbon (CNR) behaves as n-type semiconductor in electrical conduction. Compared to AGeNR and CNR, the mobilities of other nanoribbons are much smaller. Moreover, the band structure and carrier mobility of AGeNR and CNR can be effectively tuned by strain. There are different state competing for the valence band maximum (VBM). When the strain exceeds certain value, the VBM is transited to a new band-edge state accompanied with a large increase of hole mobility. The new band-edge state has smaller DP constant because its bond character makes it less sensitive to strain, and thus resulting in higher hole mobility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ab01e5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!