A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electronic structure, carrier mobility and strain modulation of CH (SiH, GeH) nanoribbons. | LitMetric

Electronic structure, carrier mobility and strain modulation of CH (SiH, GeH) nanoribbons.

J Phys Condens Matter

Hunan Key laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China.

Published: April 2019

Using first-principles calculations coupled with deformation potential (DP) theory, we have systematically studied the band structure, carrier mobility and strain modulation of monolayer graphane (CH), silicane (SiH) and germanane (GeH) nanoribbons. It is found that all the CH (SiH, GeH) nanoribbons are semiconductor with a wide range of band gap. The carrier mobility results show that the armchair germanane nanoribbon (AGeNR) has the characteristic of p -type semiconductor in electrical conduction because its hole mobility is larger than the electron mobility. While the graphane nanoribbon (CNR) behaves as n-type semiconductor in electrical conduction. Compared to AGeNR and CNR, the mobilities of other nanoribbons are much smaller. Moreover, the band structure and carrier mobility of AGeNR and CNR can be effectively tuned by strain. There are different state competing for the valence band maximum (VBM). When the strain exceeds certain value, the VBM is transited to a new band-edge state accompanied with a large increase of hole mobility. The new band-edge state has smaller DP constant because its bond character makes it less sensitive to strain, and thus resulting in higher hole mobility.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ab01e5DOI Listing

Publication Analysis

Top Keywords

carrier mobility
16
structure carrier
12
geh nanoribbons
12
hole mobility
12
mobility
8
mobility strain
8
strain modulation
8
sih geh
8
band structure
8
semiconductor electrical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!