A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of Ralstonia solanacearum Infection Dynamics in Resistant and Susceptible Pepper Lines Using Bioluminescence Imaging. | LitMetric

Evaluation of Ralstonia solanacearum Infection Dynamics in Resistant and Susceptible Pepper Lines Using Bioluminescence Imaging.

Plant Dis

Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China.

Published: February 2017

Bacterial wilt, incited by Ralstonia solanacearum, is a major disease affecting pepper (Capsicum annuum) production worldwide. The most effective management tactic is the deployment of wilt-resistant varieties. However, the lack of a nondestructive method to measure invasiveness and spatio-temporal distribution of R. solanacearum, a vascular pathogen, in planta limits better understanding of pepper resistance and plant-pathogen interactions. We evaluated the resistance of 100 pepper lines using R. solanacearum strain Rs-SY1 (phylotype I, isolated from a sweet pepper in South China). Based on the disease severity index (DSI) values, the elite inbred line BVRC 1 and the small-fruited accessions PI 640435 and PI 640444 were identified as resistant (DSI: 1.2, 1.8, and 1.9 out of 4.0, respectively). In order to evaluate bacterial infection dynamics in planta in real time, we generated seven bioluminescent R. solanacearum strains (BL-Rs1 to BL-Rs7) using vector pXX3 carrying luxCDABE genes, and selected BL-Rs7 for inoculation due to its similarity with parent strain Rs-SY1 in morphology, pathogenicity, and highest light emission in vitro. Luminescence intensity was strongly correlated to bacterial population in planta (R = 0.88). The utility of the bioluminescence assay was validated by comparing R. solanacearum infection dynamics in real-time in vivo between resistant line BVRC 1 and susceptible line BVRC 25. The distribution and multiplication of BL-Rs7 strain in resistant line BVRC 1 was conspicuously limited in plants inoculated in either roots or stem compared with susceptible line BVRC 25. These results suggest that pepper line BVRC 1 may resist colonization by interfering with R. solanacearum multiplication in the roots and stem.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-05-16-0714-REDOI Listing

Publication Analysis

Top Keywords

infection dynamics
12
ralstonia solanacearum
8
solanacearum infection
8
pepper lines
8
strain rs-sy1
8
resistant bvrc
8
susceptible bvrc
8
roots stem
8
solanacearum
7
pepper
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!