Autoimmune diseases are believed to be highly dependent on loss of immune tolerance to self-antigens. Currently, no treatments have been successful clinically in inducing autoantigen-specific tolerance, including efforts to utilize antigen-specific immunotherapy (ASIT) to selectively correct the aberrant autoimmunity. Soluble antigen arrays (SAgAs) represent a novel autoantigen delivery system composed of a linear polymer, hyaluronic acid (HA), displaying multiple copies of conjugated autoantigen. We have previously reported that soluble antigen arrays displaying proteolipid peptide (SAgA) induced tolerance to this specific multiple sclerosis (MS) autoantigen. Utilizing SAgA technology, we have developed a new ASIT as a possible type 1 diabetes (T1D) therapeutic by conjugating human insulin to HA, known as soluble antigen array insulin (SAgA). Three types were synthesized, low valency SAgA (2 insulins per HA), medium valency SAgA (4 insulins per HA), and, high valency SAgA (9 insulins per HA), to determine if valency differentially modulates the ex vivo activity of insulin-binding B cells (IBCs). Extensive biophysical characterization was performed for the SAgA molecules. SAgA molecules were successfully used to affect the biologic activity of IBCs by inducing desensitization of the B cell antigen receptors (BCR). SAgA bound specifically to insulin-reactive B cells without blocking epitopes recognized by antibodies against the Fc regions of membrane immunoglobulin or CD79 transducer components of the BCR. Preincubation of IBCs (125Tg) with SAgA, but not HA alone, rendered the IBCs refractory to restimulation. SAgA induced a decrease in BCR expression and IP3R-mediated intracellular calcium release. Surprisingly, SAgA binding to BCR on the surface of IBCs induced the observed effects at both high and low SAgA valency. Future studies aim to test the effects of SAgA on disease progression in the VH125.NOD mouse model of T1D.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446942 | PMC |
http://dx.doi.org/10.1021/acs.molpharmaceut.8b01250 | DOI Listing |
NPJ Aging
January 2025
Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan.
Age-related declines in cardiac function and exercise tolerance interfere with healthy living and decrease healthy life expectancy in older individuals. Tamogi-take mushrooms (Pleurotus cornucopiae) are known to contain high levels of Ergothioneine (EGT), an antioxidant with potential health benefits. In this study, we assessed the possibility that long-term consumption of Tamogi-take mushrooms might attenuate age-related decline in cardiac and vascular endothelial function in mice.
View Article and Find Full Text PDFSurg Neurol Int
December 2024
Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Iizuka, Japan.
Background: Omphalocele-exstrophy-imperforate anus-spinal defects (OEIS) complex is a rare, life-threatening congenital malformation primarily treated with abdominogenital repair. The optimal indication and timing of neurosurgical interventions for the associated spinal cord lesions remains insufficiently studied. We reviewed spinal dysraphism in OEIS to evaluate the best timing for neurosurgical intervention.
View Article and Find Full Text PDFQuant Plant Biol
December 2024
Department of Mechanical Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Yurihonjo, Japan.
Plant zygote cells exhibit tip growth, producing a hemisphere-like tip. To understand how this hemisphere-like tip shape is formed, we revisited a viscoelastic-plastic deformation model that enabled us to simultaneously evaluate the shape, stress and strain of Arabidopsis () zygote cells undergoing tip growth. Altering the spatial distribution of cell wall extensibility revealed that cosine-type distribution and growth in a normal direction to the surface create a stable hemisphere-like tip shape.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Design, Kyushu University, Fukuoka, Japan.
Cycling is a beneficial physical activity for rehabilitating individuals with lower-limb amputations and serves as a feasible leisure sport. However, the optimal bicycle configuration for cycling with a unilateral transtibial prosthesis at leisure levels has not been investigated. For saddle height at professional cycling levels, existing literature suggests utilizing the same configuration as that used by intact cyclists, where the knee reaches 25-35° at maximum extension.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Department of Social and Environmental Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
Background/objectives: Although the protective effects of zinc against COVID-19 are documented, its impact on COVID-19 vaccine immunogenicity remains unknown.
Methods: We conducted a prospective study involving a cohort of 79 Japanese individuals (aged 21-56 years; comprising three subcohorts) and measured their serum zinc levels pre-vaccination and anti-SARS-CoV-2 IgM/IgG levels pre- and post-vaccination over 4 months.
Results: Serum zinc concentrations ranged between 74-140 and 64-113 μg/dL in male and female individuals, respectively, with one male and 11 female participants exhibiting subclinical zinc deficiency (60-80 μg/dL).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!