Oil extraction efficiency strongly depends on the wettability status (oil- vs water-wet) of reservoir rocks during oil recovery. Aromatic compounds with polar functional groups in crude oil have a significant influence on binding hydrophobic molecules to mineral surfaces. Most of these compounds are in the asphaltene fraction of crude oil. This study focuses on the hydroxyl functional group, an identified functional group in asphaltenes, to understand how the interactions between hydroxyl groups in asphaltenes and mineral surfaces begin. Phenol and 1-naphthol are used as asphaltene surrogates to model the simplest version of asphaltenes. Adsorption of oil molecules on the calcite {101̅4} surface is described using static quantum-mechanical density functional theory (DFT) calculations and classical molecular dynamics (MD) simulations. DFT calculations indicate that adsorption of phenol and 1-naphthol occurs preferentially between their hydroxyl group and calcite step edges. 1-Naphthol adsorbs more strongly than phenol, with different adsorption geometries due to the larger hydrophobic part of 1-naphthol. MD simulations show that phenol can behave as an agent to separate oil from the water phase and to bind the oil phase to the calcite surface in the water/oil mixture. In the presence of phenol, partial separation of water/oil with an incomplete lining of phenol at the water/oil boundary is observed after 0.2 ns. After 1 ns, perfect separation of water/oil with a complete lining of phenol at the water/oil boundary is observed, and the calcite surface becomes oil-wet. Phenol molecules enclose decane molecules at the water-decane boundary preventing water from repelling decane molecules from the calcite surface and facilitate further accumulation of hydrocarbons near the surface, rendering the surface oil-wet. This study indicates phenol and 1-naphthol to be good proxies for polar components in oil, and they can be used in designing further experiments to test pH, salinity, and temperature dependence to improve oil recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.8b03666 | DOI Listing |
BMC Psychol
January 2025
Faculty of Psychology, Naval Medical University, Shanghai, China.
Anxiety is known to significantly impair cognitive function, particularly attentional control. While exercise has been demonstrated to alleviate these cognitive deficits, the precise neural mechanisms underlying these effects remain poorly understood. This study examines the effects of exercise on attentional control in individuals with high trait anxiety, based on attentional control theory, which suggests that such individuals have reduced top-down attention.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Capital Medical University, No. 31 Xinjiekou East Street, Xicheng District, Beijing, 100035, China.
Background: Olecranon fractures account for 8 ∼ 10% of all elbow fractures and usually require surgical intervention. Tension band wiring (TBW) is considered as the standard treatment while it is associated with high re-operation rates.
Objective: This study aims to compare the functional outcomes, complications and re-operations of hook plate fixation (HPF) versus TBW in treating Mayo Type II olecranon fractures.
J Transl Med
January 2025
Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
Background: The progression of bladder cancer (BC) from non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) significantly increases disease severity. Although the tumor microenvironment (TME) plays a pivotal role in this process, the heterogeneity of tumor cells and TME components remains underexplored.
Methods: We characterized the transcriptomes of single cells from 11 BC samples, including 4 NMIBC, 4 MIBC, and 3 adjacent normal tissues.
Environ Evid
January 2025
Modelling, Evidence and Policy RG, SNES, Newcastle University, Newcastle, NE1 7RU, UK.
Background: Riparian zones are vital transitional habitats that bridge the gap between terrestrial and aquatic ecosystems. They support elevated levels of biodiversity and provide an array of important regulatory and provisioning ecosystem services, of which, many are fundamentally important to human well-being, such as the maintenance of water quality and the mitigation of flood risk along waterways. Increasing anthropogenic pressures resulting from agricultural intensification, industry development and the expansion of infrastructure in tropical regions have led to the widespread degradation of riparian habitats resulting in biodiversity loss and decreased resilience to flooding and erosion.
View Article and Find Full Text PDFJ Neuroeng Rehabil
January 2025
Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, Toledo, Spain.
Background: Although transcutaneous spinal cord stimulation (tSCS) has been suggested as a safe and feasible intervention for gait rehabilitation, no studies have determined its effectiveness compared to sham stimulation.
Objective: To determine the effectiveness of tSCS combined with robotic-assisted gait training (RAGT) on lower limb muscle strength and walking function in incomplete spinal cord injury (iSCI) participants.
Methods: A randomized, double-blind, sham-controlled clinical trial was conducted.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!