Orchids are a classic angiosperm model for understanding biotic pollination. We studied orchid species within two species-rich herbaceous communities that are known to have either hymenopteran or dipteran insects as the dominant pollinators, in order to understand how flower colour relates to pollinator visual systems. We analysed features of the floral reflectance spectra that are significant to pollinator visual systems and used models of dipteran and hymenopteran colour vision to characterise the chromatic signals used by fly-pollinated and bee-pollinated orchid species. In contrast to bee-pollinated flowers, fly-pollinated flowers had distinctive points of rapid reflectance change at long wavelengths and a complete absence of such spectral features at short wavelengths. Fly-pollinated flowers also had significantly more restricted loci than bee-pollinated flowers in colour space models of fly and bee vision alike. Globally, bee-pollinated flowers are known to have distinctive, consistent colour signals. Our findings of different signals for fly pollination is consistent with pollinator-mediated selection on orchid species that results from the distinctive features of fly visual systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/plb.12968 | DOI Listing |
Nat Prod Res
January 2025
Programa de Pós-graduação em Ciências Biológicas - Botânica Tropical, Universidade Federal Rural da Amazônia/Museu Paraense Emílio Goeldi, Belém, Brazil.
This study presents the first complete analysis of the chemical composition of the flowers of the species and . The compounds were extracted distillation and simultaneous extraction and analysed using gas chromatography coupled to mass spectrometry. A total of 82 compounds were identified and the results reveal significant differences in the abundance of compounds between the species.
View Article and Find Full Text PDFPlants (Basel)
December 2024
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
(Orchidaceae) boasts high ornamental value due to its pleasant aroma, foxtail spike, and elegant floral morphology. Inducing to become tetraploid enhances horticultural traits and facilitates fertile intergeneric hybrids through crosses with other market-available tetraploid species. The experimental design involved the application of colchicine at varying concentrations-0.
View Article and Find Full Text PDFDiscov Plants
December 2024
Biology Department, Vancouver Island University, 900 Fifth St, Nanaimo, BC V9R 5S5 Canada.
Unlabelled: Flower morphology often changes over altitude, although the patterns themselves can be variable, with flowers being either smaller or larger. Floral trait variation is often considered in the context of pollinator-mediated selection. However, other explanations, including underlying genetics and plasticity, resource availability and floral enemies have been proposed.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan City, Taiwan.
Front Biosci (Elite Ed)
November 2024
Department of Life Sciences, GITAM School of Science, Gandhi Institute of Technology and Management, 530045 Visakhapatnam, Andhra Pradesh, India.
Background: Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed ( L.) at copper action.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!