Macroautophagy/autophagy is a conserved ubiquitous pathway that performs diverse roles in health and disease. Although many key, widely expressed proteins that regulate autophagosome formation followed by lysosomal fusion have been identified, the possibilities of cell-specific elements that contribute to the autophagy fusion machinery have not been explored. Here we show that a macrophage-specific isoform of the vacuolar ATPase protein ATP6V0D2/subunit d2 is dispensable for lysosome acidification, but promotes the completion of autophagy via promotion of autophagosome-lysosome fusion through its interaction with STX17 and VAMP8. Atp6v0d2-deficient macrophages have augmented mitochondrial damage, enhanced inflammasome activation and reduced clearance of Salmonella typhimurium. The susceptibility of atp6v0d2 knockout mice to DSS-induced colitis and Salmonella typhimurium-induced death, highlights the in vivo significance of ATP6V0D2-mediated autophagosome-lysosome fusion. Together, our data identify ATP6V0D2 as a key component of macrophage-specific autophagosome-lysosome fusion machinery maintaining macrophage organelle homeostasis and, in turn, limiting both inflammation and bacterial infection. Abbreviations: ACTB/β-actin: actin, beta; ATG14: autophagy related 14; ATG16L1: autophagy related 16-like 1 (S. cerevisiae); ATP6V0D1/2: ATPase, H+ transporting, lysosomal V0 subunit D1/2; AIM2: absent in melanoma 2; BMDM: bone marrow-derived macrophage; CASP1: caspase 1; CGD: chronic granulomatous disease; CSF1/M-CSF: colony stimulating factor 1 (macrophage); CTSB: cathepsin B; DSS: dextran sodium sulfate; IL1B: interleukin 1 beta; IL6: interleukin 6; IRGM: immunity-related GTPase family M member; KO: knockout; LAMP1: lysosomal-associated membrane protein 1; LC3: microtubule-associated protein 1 light chain 3; LPS: lipo-polysaccaride; NLRP3: NLR family, pyrin domain containing 3; PYCARD/ASC: PYD and CARD domain containing; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SNAP29: synaptosomal-associated protein 29; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TLR: toll-like receptor; TNF: tumor necrosis factor ; TOMM20: translocase of outer mitochondrial membrane 20; ULK1: unc-51 like kinase 1; VAMP8: vesicle-associated membrane protein 8; WT: wild type; 3-MA: 3-methyladenine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526827PMC
http://dx.doi.org/10.1080/15548627.2019.1569916DOI Listing

Publication Analysis

Top Keywords

autophagosome-lysosome fusion
16
inflammasome activation
8
bacterial infection
8
fusion machinery
8
membrane protein
8
fusion
6
protein
6
macrophage-specific v-atpase
4
v-atpase subunit
4
subunit atp6v0d2
4

Similar Publications

Accumulation of microtubule-associated protein tau promotes hepatocellular carcinogenesis through inhibiting autophagosome-lysosome fusion.

Mol Cell Biochem

December 2024

Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, 8 Sanjiaohu Road, Wuhan, 430056, China.

Dysregulated expression of microtubule-associated protein tau (MAPT) has been reported in a variety of human cancers. However, whether and how Tau influences hepatocellular carcinogenesis remains elusive. This study was aimed to investigate the role and the underlying mechanism of Tau in the proliferation, invasion, migration and sorafenib sensitivity of hepatocellular carcinoma (HCC) cells.

View Article and Find Full Text PDF

The processes of autophagy, including autophagosome formation, fusion of autophagosomes with lysosomes, and degradation of autophagosomes by lysosomes, are regulated by various mechanisms. We recently found that treatment with resveratrol, an activator of the NAD-dependent protein deacetylase Sirtuin-1 (SIRT1), in a mouse model prevented autophagosome accumulation in the heart with high mTORC1 activity. In this study, we investigated whether SIRT1 mediates the effects of resveratrol on autophagosome elimination using a cardiomyocyte model.

View Article and Find Full Text PDF

We aim to investigate muscle ARNT-like protein 1 (BMAL1) regulation of syntaxin17 (STX17) in mouse hippocampal neurons, focusing on autophagy and amyloid-β (Aβ) deposition. Autophagosome-lysosome fusion in APP/PS1 hippocampal tissues was observed using transmission electron microscopy, while mRNA levels of LC3II and P62 were measured via reverse-transcription PCR (RT-PCR) after Amyloid precursor protein (APP) overexpression. STX17, linked to autophagy and differentially expressed in Alzheimer's disease (AD) brains, was knocked down or overexpressed to assess its effects.

View Article and Find Full Text PDF

Unlabelled: Coxsackievirus B3 (CVB3) is a non-enveloped picornavirus that can cause systemic inflammatory diseases including myocarditis, pericarditis, pancreatitis, and meningoencephalitis. We have previously reported that following infection, CVB3 localizes to mitochondria, inducing mitochondrial fission and mitophagy, while inhibiting lysosomal degradation by blocking autophagosome-lysosome fusion. This results in the release of virus-laden mitophagosomes from the host cell as infectious extracellular vesicles (EVs) which allow non-lytic viral egress.

View Article and Find Full Text PDF

Our previous study demonstrated that Berberine (BBR) significantly enhances autophagic flux, alleviating ischemic neuronal injury by restoring autolysosomal function, but how BBR augmented autolysosomal functions remained elusive. N-ethyl-maleimide sensitive factor (NSF) is considered as a major ATPase to reactivate soluble NSF attachment protein receptors (SNAREs), which directly mediate autophagosome-lysosome fusion. However, NSF was dramatically inactivated by ischemia to hamper membrane-membrane fusion, leading to autophagic/lysosomal dysfunction in neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!