Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The effect of urban pollutants on skin properties has been revealed through several epidemiological studies. However, comprehension of involved mechanisms remains undetermined. In addition, the impact of such stressors on skin surface properties, especially skin physico-chemistry, has not been investigated. Consequently, the present study aims to develop a new aging protocol able to highlight the impact of selected urban pollutants on a model sebaceous lipid: the squalene. Its quality has been followed during aging using LC-MS analysis. Results showed that the quality of the control solution containing only squalene remains stable during 45 days, whereas the quality of the solution containing squalene mixed with pollutants appears greatly altered, especially in the presence of heavy metals: a large amount of oxidation compounds was evidenced due to oxidation and dehydrogenation mechanisms. In addition, a physicochemical study was performed using a validated nonbiological skin model able to mimic skin physico-chemistry. Surface free energy components were calculated using contact angle measurements according to the Van Oss model. The application of degraded squalene significantly increased skin hydrophilic and monopolar behavior compared to the application of control squalene. Those modifications are essentially explained by the nature of squalene oxidation products. It must be noted from this study that squalene oxidation due to pollutants or due to high temperature did not lead to the same physicochemical consequences neither to the same oxidation products, as shown by thermal analysis. This study gives original and precious information to explain alterations induced by pollutants on skin surface properties, especially skin chemistry and physico-chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrestox.8b00311 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!