A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metallated Macrocyclic Derivatives as a Hole - Transporting Materials for Perovskite Solar Cells. | LitMetric

Spiro-OMeTAD is widely used as thehole-transporting material (HTM) in perovskite solar cells (PSC), which extracts positive charges and protects the perovskite materials from metal electrode, setting a new world-record efficiency of more than 20 %. Spiro-OMeTAD layer engross moisture leading to the degradation of perovskite, and therefore, has poor air stability. It is also expensive therefore limiting scale-up, so macrocyclic metal complex derivatives (MMDs) could be a suitable replacement. Our review covers low-cost, high yield hydrophobic materials with minimal steps required for synthesis of efficient HTMs for planar/mesostructured PSCs. The MMDs based devices demonstrated PCEs around 19 % and showed stability for a longer duration, indicating that MMDs are a promising alternative to spiro-OMeTAD and also easy to scale-up via solution approach. Additionally, this review describes how optical and electrical properties of MMDs change with chemical structure, allowing for the design of novel hole-mobility materials to achieve negligible hysteresis and act as effective functional barriers against moisture which results in a significant increase in the stability of the device. We provide an overview of the apt green-synthesis, characterization, stability and implementation of the various classes of macrocyclic metal complex derivatives as HTM for photovoltaic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tcr.201800171DOI Listing

Publication Analysis

Top Keywords

perovskite solar
8
solar cells
8
macrocyclic metal
8
metal complex
8
complex derivatives
8
metallated macrocyclic
4
macrocyclic derivatives
4
derivatives hole
4
hole transporting
4
materials
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!