Background: Epigenetics may play a role in wheezing and asthma development. We aimed to examine infant saliva DNA methylation in association with early childhood wheezing.
Methods: A case-control study was nested within the NINFEA birth cohort with 68 cases matched to 68 controls by sex, age (between 6 and 18 months, median: 10.3 months) and season at saliva sampling. Using a bumphunting region-based approach, we examined associations between saliva methylome measured using Illumina Infinium HumanMethylation450k array and wheezing between 6 and 18 months of age. We tested our main findings in independent publicly available data sets of childhood respiratory allergy and atopic asthma, with DNA methylation measured in different tissues and at different ages.
Results: We identified one wheezing-associated differentially methylated region (DMR) spanning ten sequential CpG sites in the promoter-regulatory region of PM20D1 gene (family-wise error rate < 0.05). The observed associations were enhanced in children born to atopic mothers. In the publicly available data sets, hypermethylation in the same region of PM20D1 was consistently found at different ages and in all analysed tissues (cord blood, blood, saliva and nasal epithelia) of children with respiratory allergy/atopic asthma compared with controls.
Conclusion: This study suggests that PM20D1 hypermethylation is associated with early childhood wheezing. Directionally consistent epigenetic alteration observed in cord blood and other tissues at older ages in children with respiratory allergy and atopic asthma provides suggestive evidence that a long-term epigenetic modification, likely operating from birth, may be involved in childhood atopic phenotypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pai.13023 | DOI Listing |
Physiol Genomics
January 2025
Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany.
Decades of artificial selection have markedly enhanced egg production efficiency, yet the epigenetic underpinnings, notably DNA methylation dynamics in the gut, remain largely unexplored. Here, we investigate how breeds and developmental stages influence DNA methylation profiles in laying hens, and their potential relationship to laying performance and gut health. We compared two highly selected laying hen strains, Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL), which exhibited similar egg production but divergent physiological, metabolic, and immunological characteristics.
View Article and Find Full Text PDFInvasive Lobular Carcinoma (ILC), a distinct subtype of breast cancer is hallmarked by E-Cadherin loss, slow proliferation, and strong hormone receptor positivity. ILC faces significant challenges in clinical management due to advanced stage at diagnosis, late recurrence, and development of resistance to endocrine therapy - a cornerstone of ILC treatment. To elucidate the mechanisms underlying endocrine resistance in ILC, ILC cell lines (MDA-MB-134-VI, SUM44PE) were generated to be resistant to tamoxifen, a selective estrogen receptor modulator.
View Article and Find Full Text PDFDespite considerable advances in identifying risk factors for obesity development, there remains substantial gaps in our knowledge about its etiology. Variation in obesity (defined by BMI) is thought to be due in part to heritable factors; however, obesity-associated genetic variants only account for a small portion of heritability. Epigenetic regulation, defined by genetic and/or environmental factors with changes in gene expression, may account for some of this "missing heritability".
View Article and Find Full Text PDFHortic Res
January 2025
College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China.
DNA methylation is a stable epigenetic mark that plays a crucial role in plant life processes. However, the specific functions of DNA methylation in grape berry development remain largely unknown. In this study, we performed whole-genome bisulfite sequencing on 'Kyoho' grape and its early-ripening bud mutant 'Fengzao' at different developmental stages.
View Article and Find Full Text PDFEndocrinology
January 2025
Neuroendocrinology Department, ICMR-National Institute for Research in Reproductive and Child Health, J. M. Street, Parel, Mumbai 400012, India.
Estrogen through its receptors, ERα and ERβ, regulate various aspects of spermatogenesis and male fertility. Since the sperm epigenome is an important contributing factor to male fertility, we evaluated the effects of estrogen signaling activation through the ERs on sperm DNA methylome in adult rats. Whole genome-bisulfite sequencing (WGBS) in caudal sperm DNA was performed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!