A key challenge in the development of central nervous system drugs is the availability of drug target specific blood-based biomarkers. As a new approach, we applied cluster-based pharmacokinetic/pharmacodynamic (PK/PD) analysis in brain extracellular fluid (brain ) and plasma simultaneously after 0, 0.17, and 0.86 mg/kg of the dopamine D agonist quinpirole (QP) in rats. We measured 76 biogenic amines in plasma and brain after single and 8-day administration, to be analyzed by cluster-based PK/PD analysis. Multiple concentration-effect relations were observed with potencies ranging from 0.001-383 nM. Many biomarker responses seem to distribute over the blood-brain barrier (BBB). Effects were observed for dopamine and glutamate signaling in brain , and branched-chain amino acid metabolism and immune signaling in plasma. Altogether, we showed for the first time how cluster-based PK/PD could describe a systems-response across plasma and brain, thereby identifying potential blood-based biomarkers. This concept is envisioned to provide an important connection between drug discovery and early drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389346PMC
http://dx.doi.org/10.1002/psp4.12370DOI Listing

Publication Analysis

Top Keywords

blood-based biomarkers
12
cluster-based pk/pd
12
plasma brain
12
pk/pd analysis
8
brain
6
plasma
5
biomarkers quinpirole
4
quinpirole pharmacology
4
cluster-based
4
pharmacology cluster-based
4

Similar Publications

Acute ischemic stroke with large vessel occlusion (LVO) continues to present a considerable challenge to global health, marked by substantial morbidity and mortality rates. Although definitive diagnostic markers exist in the form of neuroimaging, their expense, limited availability, and potential for diagnostic delay can often result in missed opportunities for life-saving interventions. Despite several past attempts, research efforts to date have been fraught with challenges likely due to multiple factors, such as the inclusion of diverse stroke types, variable onset intervals, differing pathobiologies, and a range of infarct sizes, all contributing to inconsistent circulating biomarker levels.

View Article and Find Full Text PDF

Understanding the Immune System and Biospecimen-Based Response in Glioblastoma: A Practical Guide to Utilizing Signal Redundancy for Biomarker and Immune Signature Discovery.

Curr Oncol

December 2024

Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA.

Glioblastoma (GBM) is a primary central nervous system malignancy with a median survival of 15-20 months. The presence of both intra- and intertumoral heterogeneity limits understanding of biological mechanisms leading to tumor resistance, including immune escape. An attractive field of research to examine treatment resistance are immune signatures composed of cluster of differentiation (CD) markers and cytokines.

View Article and Find Full Text PDF

People with Down Syndrome (DS) are at high risk of developing Alzheimer's disease dementia (AD) and cerebral amyloid angiopathy, which is a critical factor contributing to dementia in sporadic AD. Predicting and monitoring the decline and onset of dementia is a diagnostic challenge and of essence in daily care and support for people with DS. In this literature scoping review, we first summarize the different blood-based biomarkers for AD in DS.

View Article and Find Full Text PDF

Blood-based biomarkers have been revolutionizing the detection, diagnosis and screening of Alzheimer's disease. Specifically, phosphorylated-tau variants (p-tau, p-tau and p-tau) are promising biomarkers for identifying Alzheimer's disease pathology. Antibody-based assays such as single molecule arrays immunoassays are powerful tools to investigate pathological changes indicated by blood-based biomarkers and have been studied extensively in the Alzheimer's disease research field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!