Human cytochrome P450 1B1 (CYP1B1)-mediated formation of 4-hydroxyestradiol (4-OHE2) from 17β-estradiol plays an important role in the progression of human breast cancer, while the biotransformation of 17β-estradiol to 2-hydroxyestradiol mediated by cytochrome P450 1A1 (CYP1A1) is considered as a less harmful pathway. In this study, inhibitory effects of flavonoids baicalein and oroxylin A, a metabolite of baicalein in human body, on CYP1A1 and 1B1 activities were investigated in vitro. The inhibition intensities of baicalein and oroxylin A towards CYP1B1 were greater than towards CYP1A1 with a mixed mechanism. In addition, oroxylin A showed a stronger inhibitory effect than baicalein towards the CYP1B1-mediated 17β-estradiol 4-hydroxylation, with the IC values of 0.0146 and 2.27 μM, respectively. Docking studies elucidated that oroxylin A had a stronger binding affinity than baicalein for CYP1B1. In MCF-7 cells, compared with baicalein-treated groups, oroxylin A with lower doses decreased and increased the formation of 4-OHE2 and 2-hydroxyestradiol, respectively, with a preferential induction of mRNA of CYP1A1 over CYP1B1. In conclusion, this study demonstrated that oroxylin A showed a stronger inhibitory effect than baicalein on CYP1B1-mediated 4-OHE2 formation in MCF-7 cells, providing crucial implications for their possibly preventive/therapeutic potential against breast cancer via inhibition of CYP1B1, particularly of oroxylin A.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ptr.6297 | DOI Listing |
Molecules
January 2025
Institute of Organic Chemistry with Center for Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Many biologically active compounds have been identified in the mucus of the garden snail , which are effective in the treatment of several diseases such as cancer, ulcers, wounds, etc. The incorporation of these compounds into the green synthesis of copper nanoparticles (CuONPs-Muc) was demonstrated in our previous study. Based on the synergistic effect of two reducing agents- snail mucus and ascorbic acid (AsA)-on CuSO.
View Article and Find Full Text PDFMolecules
January 2025
Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
Fifteen compounds (-) constructed on a hybrid structure combining a β-phenyl-α,β-unsaturated carbonyl template and a 2-aminothiazol-4(5)-one scaffold were designed and synthesized as potential novel anti-tyrosinase substances. Two compounds ( and ) showed more potent inhibition against mushroom tyrosinase than kojic acid, and the inhibitory activity of (IC value: 1.60 μM) was 11 times stronger than that of kojic acid.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany.
Drought and flood (water stress) alter plant metabolism, impacting the phytochemical content and biological effects. Using spectrophotometric, HPLC, and electrophoretic methods, we analyze the effects of water stress on broccoli ( L. convar.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, China.
is a creeping evergreen shrub endemic to Taiwan. In traditional medicine, Rhamnaceae plants are used as herbal remedies for conditions such as itching, difficulty urinating, and constipation. This study explores the inhibitory effects of various solvent extracts and bioactive components of on α-glucosidase, tyrosinase, acetylcholinesterase (AChE), and antioxidant activity.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Hubei Shizhen Laboratory, Wuhan, China.
Introduction: The mortality rate for liver cancer is extremely high but clinical treatments have not made much progress, so it is necessary to develop anticancer agents with lower toxicities and more effective liver-targeting drug delivery systems (LTDDSs). At present, LTDDSs mediated by the asialoglycoprotein receptor (ASGPR) show excellent effects at improving the liver-targeting and antitumor effects of drugs. However, the galactosyl ligands are typically prepared by chemical synthesis and have some shortcomings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!