In this study, a series of new fluorine or chlorine-substituted cinnamic acid derivatives that contain tertiary amine side chain were designed, synthesized, and evaluated in acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition. The results show that almost all the derivatives containing tertiary amine side chain (compounds 4a-9d) exhibit moderate or potent activity in AChE inhibition. By contrast, their parent compounds (compounds 3a-3f) in the absence of tertiary amine moitery exhibit poor inhibitory activity against AChE. For the compounds containing pyrroline or piperidine side chain, the bioactivity in AChE inhibition is much intense than those containing N,N-diethylamino side chain. The chlorine or fluorine substituted position produces a significant effect on the bioactivity and selectivity in AChE inhibition. Most of the compounds that contain para-substituted fluorine or chlorine exhibit potent activity against AChE and poor activity against BChE, while ortho-substituted analogs show the opposite effect. It is worth noticing that the compounds containing N,N-diethylamino side chain are exceptions to this pattern. Among the newly synthesized compounds, compounds 6d are the most potent in AChE inhibition (IC = 1.11 ± 0.08 μmol/L) with high selectivity for AChE over BChE (selectivity ratio: 46.58). An enzyme kinetic study of compounds 6d suggests it produces a mixed-type inhibitory effect in AChE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ddr.21515 | DOI Listing |
Chemistry
January 2025
Shandong Normal University, Chemistry, No.88 Wenhua East Road, 250014, Jinan, CHINA.
Non-fused electron acceptors have obtained increasing curiosity in organic solar cells (OSCs) thanks to simple synthetic route and versatile chemical modification capabilities. However, non-fused acceptors with varying quinoxaline core and as-cast device have rarely been explored, and the molecular structure-photovoltaic performance relationship of such acceptors remains unclear. Herein, two non-fused acceptors L19 and L21 with thienyl substituted non-fluorinated/fluorinated quinoxaline core were developed via five-step synthesis.
View Article and Find Full Text PDFFood Chem
January 2025
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Product Processing, Ministry of Agriculture, Beijing 100193, China; Zibo Institute for Digital Agriculture and Rural Research, Zibo 255051, China. Electronic address:
The study was designed to investigate the mechanism of Riboflavin (RF)-mediated UVA photosensitive oxidation on beef myofibrillar proteins (MP) oxidized at different storage times. To elucidate the direct relationship between RF and protein oxidation, the mechanism of action was analyzed in terms of amino acid and side chain residues, protein structure, and protein oxidative metabolism. Oxidation of MP resulted in significant changes in the levels of carbonyls, sulfhydryls, Lysine, Arginine, Threonin, and Histidine.
View Article and Find Full Text PDFScience
January 2025
State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High-Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
We explored the potential for membrane materials to reduce energy and carbon requirements for the separation of aliphatic hydrocarbon feedstocks and products. We developed a series of fluorine-rich poly(arylene amine) polymer membranes that feature rigid polymer backbones with segregated perfluoroalkyl side chains. This combination imbues the polymers with resistance to dilation induced by hydrocarbon immersion without the loss of solution-based membrane fabrication techniques.
View Article and Find Full Text PDFBioinformatics
January 2025
Department of Molecular Genetics, University of Toronto, Ontario, M5S 3K3, Canada.
Motivation: Accurate prediction of protein side-chain conformations is necessary to understand protein folding, protein-protein interactions and facilitate de novo protein design.
Results: Here we apply torsional flow matching and equivariant graph attention to develop FlowPacker, a fast and performant model to predict protein side-chain conformations conditioned on the protein sequence and backbone. We show that FlowPacker outperforms previous state-of-the-art baselines across most metrics with improved runtime.
Angew Chem Int Ed Engl
January 2025
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
Currently, the development of polymeric hole-transporting materials (HTMs) lags behind that of small-molecule HTMs in inverted perovskite solar cells (PSCs). A critical challenge is that conventional polymeric HTMs are incapable of forming ultra-thin and conformal coatings like self-assembly monolayers (SAMs), especially for substrates with rough surface morphology. Herein, we address this challenge by designing anchorable polymeric HTMs (CP1 to CP5).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!