The reactions between Al+(31S) and O3, O2, N2, CO2 and H2O were studied using the pulsed laser ablation at 532 nm of an aluminium metal target in a fast flow tube, with mass spectrometric detection of Al+ and AlO+. The rate coefficient for the reaction of Al+ with O3 is k(293 K) = (1.4 ± 0.1) × 10-9 cm3 molecule-1 s-1; the reaction proceeds at the ion-dipole enhanced Langevin capture frequency with a predicted T-0.16 dependence. For the recombination reactions, electronic structure theory calculations were combined with Rice-Ramsperger-Kassel-Markus theory to extrapolate the measured rate coefficients to the temperature and pressure conditions of planetary ionospheres. The following low-pressure limiting rate coefficients were obtained for T = 120-400 K and He bath gas (in cm6 molecule-2 s-1, uncertainty ±σ at 180 K): log10(k, Al+ + N2) = -27.9739 + 0.05036 log10(T) - 0.60987(log10(T))2, σ = 12%; log10(k, Al+ + CO2) = -33.6387 + 7.0522 log10(T) - 2.1467(log10(T))2, σ =13%; log10(k, Al+ + H2O) = -24.7835 + 0.018833 log10(T) - 0.6436(log10(T))2, σ = 27%. The Al+ + O2 reaction was not observed, consistent with a D°(Al+-O2) bond strength of only 12 kJ mol-1. Two reactions of AlO+ were also studied: k(AlO+ + O3, 293 K) = (1.3 ± 0.6) × 10-9 cm3 molecule-1 s-1, with (63 ± 9)% forming Al+ as opposed to OAlO+; and k(AlO+ + H2O, 293 K) = (9 ± 4) × 10-10 cm3 molecule-1 s-1. The chemistry of Al+ in the ionospheres of Earth and Mars is then discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp07572gDOI Listing

Publication Analysis

Top Keywords

cm3 molecule-1
12
molecule-1 s-1
12
log10k al+
12
planetary ionospheres
8
al+
8
10-9 cm3
8
rate coefficients
8
study reactions
4
reactions ions
4
ions influence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!