Synovial sarcoma (SS) is a malignant soft tissue lesion and most commonly arises in young adults. Chromosomal translocation t(X;18)(p11;q11) results in the formation of / by gene fusion of the SS18 gene on chromosome 18 to either , , or gene located on chromosome X, which is detected in more than 95% of SSs. Although multiple lines of evidence suggest that the fusion is the oncogene in this tumor, the protein expression profiles associated with / have yet to be elucidated. In this study, we conducted proteomic studies using / knockdown in three SS cell lines to identify the regulated proteins associated with SS18/SSX in SS. Isobaric tags for relative and absolute quantitation (i-TRAQ) analyses identified approximate 1700-2,000 proteins regulated by the SS18/SSX fusion in each SS cell line. We also analyzed the three profiles to identify proteins that were similarly altered in all 3 cell lines and found 17 consistently upregulated and 18 consistently downregulated proteins, including TAGLN and ACTN4. In addition, network analyses identified several critical pathways including RUNX2 and SMARCA4. RUNX2 and SMARCA4 had the highest ranking in these identified pathways. In addition, we found that expression of TAGLN inhibited cell viability in SS cell lines. Our data suggest that the differentiation and cell growth of SS may be enhanced by the identified proteins induced by SS18/SSX. We believe that the findings obtained in the present functional analyses will help to improve our understanding of the relationship between SS18/SSX and malignant behavior in SS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331019 | PMC |
http://dx.doi.org/10.18632/oncotarget.26493 | DOI Listing |
Eur J Med Chem
January 2025
School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China. Electronic address:
Temozolomide, a widely used alkylating agent for glioblastoma treatment, faces significant challenges due to the development of resistance, which severely impacts patient survival. This underscores the urgent need for novel strategies to overcome this barrier. Focal adhesion kinase (FAK), an intracellular non-receptor tyrosine kinase, is highly expressed in glioblastoma cells and has been identified as a promising therapeutic target for anti-glioblastoma drug development.
View Article and Find Full Text PDFJ Food Sci
January 2025
College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.
Ginseng and its processed products are valued as health foods for their nutritional benefits. The traditional forms of processed ginseng include white ginseng, dali ginseng (DLG), red ginseng (RG), and black ginseng (BG). However, the impact of processing on the chemical composition and anti-tumor efficacy of these products is not well understood.
View Article and Find Full Text PDFNeoplasma
December 2024
Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuchang, Wuhan, Hubei, China.
Many lines of evidence suggest that circular RNAs (circRNAs) are closely associated with the occurrence and progression of colon cancer. The objective of this study was to investigate the regulatory effects and mechanisms of circ_0075829 on ferroptosis and immune escape in colon cancer. We utilized colon cancer cell lines and a xenograft mouse model to analyze the function of circ_0075829 in vitro and in vivo.
View Article and Find Full Text PDFNeoplasma
December 2024
Department of General Surgery/Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
Esophageal squamous cell carcinoma (ESCC) has high mortality. The role and regulatory mechanism of hsa_circ_0021727 (circ_0021727) in ESCC remain largely unknown. This study focused on the undiscovered impact of circ_0021727 on cell cycle progression, apoptosis, and angiogenesis of ESCC.
View Article and Find Full Text PDFNeoplasma
December 2024
Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!