The effects of transcranial direct current stimulation (tDCS) on motor cortical excitability are highly variable between individuals. Inter-individual differences in the electric fields generated in the brain by tDCS might play a role in the variability. Here, we explored whether these fields are related to excitability changes following anodal tDCS of the primary motor cortex (M1). Motor evoked potentials (MEPs) were measured in 28 healthy subjects before and after 20 min sham or 1 mA anodal tDCS of right M1 in a double-blind crossover design. The electric fields were individually modelled based on magnetic resonance images. Statistical analysis indicated that the variability in the MEPs could be partly explained by the electric fields, subjects with the weakest and strongest fields tending to produce opposite changes in excitability. To explain the findings, we hypothesized that the likely locus of action was in the hand area of M1, and the effective electric field component was that in the direction normal to the cortical surface. Our results demonstrate that a large part of inter-individual variability in tDCS may be due to differences in the electric fields. If this is the case, electric field dosimetry could be useful for controlling the neuroplastic effects of tDCS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345748PMC
http://dx.doi.org/10.1038/s41598-018-37226-xDOI Listing

Publication Analysis

Top Keywords

electric fields
20
inter-individual variability
8
transcranial direct
8
direct current
8
current stimulation
8
differences electric
8
anodal tdcs
8
electric field
8
electric
7
tdcs
6

Similar Publications

The electrical conductivity and antibacterial properties are crucial characteristics for bacterial cellulose (BC) based membranes to be broadly applied in the field of wearable electronics. In the study, to achieve these aims, alpha-lipoic acid (LA) was utilized as anchoring groups and reducing agent, hydroxypropyl-β-cyclodextrin (HP-β-CD) capped magnetic particles (FeO NPs) and the in-situ formed silver nanoparticles (AgNPs) were sequentially incorporated into the BC matrix to fabricate BC based nanocomposite membranes (HP-β-CD/FeO/LA@BC and HP-β-CD/FeO/LA/Ag@BC). Fourier transform attenuated total reflectance infrared spectroscopy (FTIR-ATR) and field emission scanning electron microscopy (FE-SEM) analysis proved the dense networks were formed in the modified BC membranes.

View Article and Find Full Text PDF

Radiofrequency evoked potentials: A new window into the nociceptive system.

Clin Neurophysiol

January 2025

Institute for Research and Development on Bioengineering and Bioinformatics (IBB), CONICET-UNER, Oro Verde, Argentina; Center for Rehabilitation Engineering and Neuromuscular and Sensory Research (CIRINS), National University of Entre Ríos (UNER), Oro Verde, Argentina. Electronic address:

Objective: To describe the cortical evoked potentials in response to radiofrequency stimulation (RFEPs) in human volunteers.

Methods: Seventeen healthy volunteers participated in an experimental session in which radiofrequency (RF) and electrical (ES) stimulation were applied to the dorsum of the hands and feet. EEG was recorded to evaluate evoked responses for each stimulus modality and stimulation site.

View Article and Find Full Text PDF

Fluorescence-enhanced detection of sulfide ions through tuning the structure-activity relationship of gold nanoclusters.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China. Electronic address:

The concentration of S is a vital environmental indicator for evaluating the quality of source water, surface water, and wastewater, and it has a significant impact on biological systems, particularly human health. Therefore, it is crucial to detect S selectively and sensitively. In this study, we developed a simple and rapid one-pot method to prepare a gold nanocluster (BSA-AuNCs) probe for fluorescence-enhanced detection of S toxemia and analyzed the morphological characteristics of BSA-AuNCs and its complex with S using various characterization techniques.

View Article and Find Full Text PDF

Recycling waste salt in the dry reprocessing of nuclear fuel and reducing electric energy consumption in the electrorefining process are crucial steps toward addressing significant challenges in this field. The present study proposes a novel approach to purify waste salt by selectively adsorbing excessive fission products using 5A molecular sieves (5A), based on the principles of electrorefining, with the ultimate aim of achieving sustainable development in nuclear fuel. First, Lutetium (Lu)-Bi alloy was synthesized through constant potential electrolysis in the LiCl-KCl-LuCl melt, resulting in a 90.

View Article and Find Full Text PDF

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!