RGB Magnetophotonic Crystals for High-contrast Magnetooptical Spatial Light Modulators.

Sci Rep

Department of Electrical and Electronics Engineering, Koç University, Sarıyer, Istanbul, 34450, Turkey.

Published: January 2019

Magnetooptical spatial light modulators (MOSLMs) are photonic devices that encode information in photonic waveforms by changing their amplitude and phase using magnetooptical Faraday or Kerr rotation. Despite the progress on both MO materials and switching methods, significant improvements on materials engineering and SLM design are needed for demonstrating low-power, multicolor, analog and high-contrast MOSLM devices. In this study, we present design rules and example designs for a high-contrast and large figure-of-merit MOSLM using three-color magnetophotonic crystals (MPC). We demonstrate for the first time, a three-defect MPC capable of simultaneously enhancing Faraday rotation, and high-contrast modulation at three fundamental wavelengths of red, green and blue (RGB) within the same pixel. We show using 2D finite-difference time-domain simulations that bismuth-substituted yttrium iron garnet films are promising for low-loss and high Faraday rotation MOSLM device in the visible band. Faraday rotation and loss spectra as well as figure-of-merit values are calculated for different magnetophotonic crystals of the form (H/L)/(D/L)/(H/L). After an optimization of layer thicknesses and MPC configuration, Faraday rotation values were found to be between 20-55° for losses below 20 dB in an overall thickness less than 1.5 µm including three submicron garnet defect layers. The experimental demonstration of our proposed 3-color MOSLM devices can enable bistable photonic projectors, holographic displays, indoor visible light communication devices, photonic beamforming for 5 G telecommunications and beyond.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346042PMC
http://dx.doi.org/10.1038/s41598-018-37317-9DOI Listing

Publication Analysis

Top Keywords

faraday rotation
16
magnetophotonic crystals
12
magnetooptical spatial
8
spatial light
8
light modulators
8
moslm devices
8
faraday
5
rotation
5
rgb magnetophotonic
4
high-contrast
4

Similar Publications

We study experimentally the nonlinear mode coupling between circular polarizations in a vertical-cavity surface-emitting laser (VCSEL) device developed for spin injection. The specific experimental arrangement that includes a Faraday rotator enables laser oscillation on left-circular or right-circular polarization, by adjusting the cavity losses. We show the simultaneous oscillation of both polarizations never occurs, proving that the Lamb coupling constant is very close to 1 in this VCSEL device, a situation that is ideal for spintronic applications.

View Article and Find Full Text PDF

To design an innovative magneto-optical material aimed at a large Verdet constant coincides with the development trend of state-of-the-art modern optical devices. In this work, a magneto-optical transparent PrZrO ceramic with pyrochlore structure was successfully fabricated by vacuum sintering plus hydrogen reduction for the first time to our knowledge. The two- and three-dimensional images observed on the laser scanning confocal microscopy reveal that the grain-boundary dent depth of the polished PrZrO ceramic is only ∼1.

View Article and Find Full Text PDF
Article Synopsis
  • Modulating signals in spectroscopy helps reduce noise, but using optical modulators with broadband coherent light sources like optical frequency combs can complicate experiments.
  • This study introduces a new technique called broadband Faraday modulation rotation spectroscopy (FAMOS) that makes it easier to apply modulation by lowering the modulation frequency from tens of MHz to kHz.
  • The new method not only simplifies the setup but also enhances the signal-to-noise ratio by effectively managing low-frequency noise, leading to more accurate measurements in practical applications.
View Article and Find Full Text PDF

Faraday isolators are usually limited to Faraday materials with strong Verdet constants. We present a method to reach the 45° polarization rotation angle needed for optical isolators with materials exhibiting a weak Faraday effect. The Faraday effect is enhanced by passing the incident radiation multiple times through the Faraday medium while the rotation angle accumulates after each pass.

View Article and Find Full Text PDF

M-type barium hexaferrites (BaLaFeO) were prepared by the liquid phase epitaxial (LPE) method, in which Ba was substituted by La. The Faraday rotation effect of materials in the frequency range of 0.5-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!