Backward optical parametric oscillation has attracted attention for cavityless spectral narrowband generation based on perfect photon conversion. Few demonstrations have shown its potential from the aspect of nonlinear photonics; therefore, the mechanisms of momentum conservation among interacting light waves have been concealed by the restricted configuration under the phase-matching condition of periodically poled structures. Here, we unveil a tunable mechanism in the terahertz region by active control of the phase-matching condition. The tunability of backward terahertz-wave parametric oscillation is investigated using a quasi-collinear phase-matching model and its frequency range from the sub-terahertz to terahertz region is identified. Transform-limited terahertz-wave pulse is achieved simply by installing a device on the pump propagating line with no cavity. Moreover, the cascading terahertz-wave generation enhances the photon conversion efficiency, thus making nonlinear optics and its applications more promising. The results highlight new capabilities for using modern ferroelectric materials and encourage further research on nonlinear optics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345757 | PMC |
http://dx.doi.org/10.1038/s41598-018-37068-7 | DOI Listing |
Anal Chem
December 2024
Joint Mass Spectrometry Centre/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.
To our knowledge, this study presents the first implementation of wavelength-resolved resonance-enhanced multiphoton ionization (REMPI) spectroscopy under atmospheric pressure ionization conditions using a high-resolution mass spectrometric system. Atmospheric pressure laser ionization MS spectroscopic measurements were conducted on over 70 different polycyclic aromatic hydrocarbons (PAHs) and hetero-PAHs (N, S, and O) in standard solutions, as well as three complex PAH-containing samples. The results demonstrate the successful transfer of REMPI spectroscopy from vacuum to atmospheric pressure conditions, maintaining spectral integrity without significant band broadening.
View Article and Find Full Text PDFPhys Rev E
November 2024
Department of Mathematical Engineering, Musashino University, Tokyo 135-8181, Japan.
Pulse generation in a spatially extended system is studied numerically. Using an array of coupled excitable oscillators, pulse generation is achieved by introducing a parametric heterogeneity between the two partitions of the array. The profile of the propagating pulses can be regulated using the parameter mismatch between these two partitions.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia.
In light of the ponderomotive force, this article focuses on establishing the exact wave structures of the ion sound system. It is the result of non-linear force and affects a charged particle oscillating in an inhomogeneous electromagnetic field. By using the Riemann-Liouville operator, -operator, and Atangana-Baleanu fractional analysis, the examined equation-which consists of the normalized electric field of the Langmuir oscillation and normalized density perturbation-is thoroughly examined.
View Article and Find Full Text PDFEpilepsia
December 2024
Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, CEA, CNRS, Inserm, Orsay, France.
Objectives: Resective surgery in drug-resistant focal epilepsy (DRFE) requires extensive evaluation to localize the epileptogenic zone (EZ). When non-invasive phase 1 assessments (electroencephalography, EEG; magnetic resonance imaging, MRI; and F-Fluorodeoxyglucose-positron emission tomography, [F]FDG-PET) are inconclusive for EZ localization, invasive investigations such as stereo-EEG (SEEG) are necessary. Epileptogenicity maps (Ems) visualize the EZ using SEEG-identified ictal high-frequency oscillations (iHFOs).
View Article and Find Full Text PDFISA Trans
December 2024
Department of Electrical Engineering, National Institute of Technology Rourkela, Odisha, India. Electronic address:
Accurate estimation of low frequency modes in power system are very much important for improving small signal stability. The parametric model parameters estimator known as Total least square estimation of signal parameters via rotational invariance techniques (TLS-ESPRIT) works effectively even in noisy conditions. However, this model parameter estimator requires prior information about numbers of modes of the signal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!