Exploring the substrate scope of ferulic acid decarboxylase (FDC1) from Saccharomyces cerevisiae.

Sci Rep

Biocatalysis and Biotransformation Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University of Cluj-Napoca, Arany János nr. 11, Cluj-Napoca, RO-400028, Romania.

Published: January 2019

Ferulic acid decarboxylase from Saccharomyces cerevisiae (ScFDC1) was described to possess a novel, prenylated flavin mononucleotide cofactor (prFMN) providing the first enzymatic 1,3-dipolar cycloaddition mechanism. The high tolerance of the enzyme towards several non-natural substrates, combined with its high quality, atomic resolution structure nominates FDC1 an ideal candidate as flexible biocatalyst for decarboxylation reactions leading to synthetically valuable styrenes. Herein the substrate scope of ScFDC1 is explored on substituted cinnamic acids bearing different functional groups (-OCH, -CF or -Br) at all positions of the phenyl ring (o-, m-, p-) as well as on several biaryl and heteroaryl cinnamic acid analogues or derivatives with extended alkyl chain. It was found that E. coli whole cells expressing recombinant ScFDC1 could transform a large variety of substrates with high conversion, including several bulky aryl and heteroaryl cinnamic acid analogues, that characterize ScFDC1 as versatile and highly efficient biocatalyst. Computational studies revealed energetically favoured inactive binding positions and limited active site accessibility for bulky and non-linear substrates, such as 2-phenylthiazol-4-yl-, phenothiazine-2-yl- and 5-(4-bromophenyl)furan-2-yl) acrylic acids. In accordance with the computational predictions, site-directed mutagenesis of residue I330 provided variants with catalytic activity towards phenothiazine-2-yl acrylic acid and provides a basis for altering the substrate specificity of ScFDC1 by structure based rational design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345843PMC
http://dx.doi.org/10.1038/s41598-018-36977-xDOI Listing

Publication Analysis

Top Keywords

substrate scope
8
ferulic acid
8
acid decarboxylase
8
saccharomyces cerevisiae
8
heteroaryl cinnamic
8
cinnamic acid
8
acid analogues
8
acid
5
scfdc1
5
exploring substrate
4

Similar Publications

A novel silver-catalyzed cascade radical isonitrile insertion and defluorinative cyclization have been developed to synthesize CFH- and phosphinoyl-containing quinolines from -isocyanyl α-trifluoromethylstyrenes. The reaction proceeded under redox-neutral conditions and allowed the construction of a highly attractive quinoline ring system, with the simultaneous formation of the CFH group and introduction of various phosphinoyl groups in a single transformation, showing operational simplicity, a wide substrate scope, good tolerance for functional groups, and remarkable atom-/stepeconomy. Mechanistic studies indicated that the reaction is likely to involve the participation of P-centered radicals and key carbanion intermediates.

View Article and Find Full Text PDF

Electrochemical Cyclizative Carboxylation of Alkene-Tethered Aryl Isocyanides with Carbon Dioxide.

Org Lett

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.

Herein, we present an unprecedented electrochemical reductive cyclizative carboxylation of -vinylphenyl isocyanides with carbon dioxide achieved without the use of metal catalysts. This protocol demonstrates a broad substrate scope and good functional group tolerance, facilitating the rapid assembly of 2-oxoindolin-3-acetic acids in good to high yields with excellent regioselectivity. Furthermore, these structural motifs may have potential applications in formal synthesis of bioactive natural products.

View Article and Find Full Text PDF

Efficient synthesis of dihydronaphthalenes cerium-catalyzed annulation of 1-alkoxy substituted 1-isochromenes with cinnamic acids.

Org Biomol Chem

January 2025

Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.

Dihydronaphthalenes play a crucial role in bioactive natural products and new drug discovery, and efficient and economic strategies to build them are needed. Herein, we disclose a highly efficient method to prepare dihydronaphthalenes a cerium-catalyzed cycloaddition of 1-isochromenes with cinnamic acids. This newly developed method not only features a broad and low-cost substrate scope and mild conditions but also exhibits very high functional group tolerance, including hydroxyl, borate ester and ester group substituents.

View Article and Find Full Text PDF

Adaptive alcohols-alcohols cross-coupling via TFA catalysis: access of unsymmetrical ethers.

BMC Chem

January 2025

The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, 341000, Jiangxi, People's Republic of China.

Article Synopsis
  • Ethers are important organic compounds used in various industries, including pharmaceuticals and materials.
  • The study presents a method using TFA as a catalyst to efficiently create unsymmetrical ethers from alcohols and different oxygen nucleophiles under mild conditions.
  • This method shows high efficiency, with notable yields and practicality for large-scale production, demonstrating its potential for industrial applications.
View Article and Find Full Text PDF

Promoted expression of a lipase for its application in EPA/DHA enrichment and mechanistic insights into its substrate specificity.

Int J Biol Macromol

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China. Electronic address:

Expanding toolkits of EPA/DHA enrichment from natural sources is essential for better satisfying increasing demands for them. Lipase K80, from Proteus vulgaris K80, showed an application potential in EPA/DHA enrichment, whereas no desired heterologous expression in generally regarded as safe (GRAS) hosts restricted its relevant applications. In this study, expression of lipase K80 in a well-reputed GRAS host, Pichia pastoris, was achieved and further enhanced via combining disruption of its C-terminal KKL motif with co-expression of N-Acetyltransferase Mpr1, with a cumulative increment of nearly 200 % in the secretion level and the volumetric activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!