Based on the bilateral relationship between the gut microbiota and formation/function of the enteric nervous system (ENS), we sought to determine whether antibiotics-induced dysbiosis might impact the expressivity of genetically-induced ENS abnormalities. To address this, we took advantage of the TashT mouse model of Hirschsprung disease, in which colonic aganglionosis and hypoganglionosis are both much more severe in males. These defects result into two male-biased colon motility phenotypes: either megacolon that is lethal around weaning age or chronic constipation in adults, the latter being also associated with an increased proportion of nitrergic neurons in the distal ENS. Induction of dysbiosis using a cocktail of broad-spectrum antibiotics specifically impacted the colonic ENS of TashT mice in a stage-dependent manner. It further decreased the neuronal density at post-weaning age and differentially modulated the otherwise increased proportion of nitrergic neurons, which appeared normalized around weaning age and further increased at post-weaning age. These changes delayed the development of megacolon around weaning age but led to premature onset of severe constipation later on. Finally, local inhibition of nitric oxide signaling improved motility and prevented death by megacolon. We thus conclude that exposure to antibiotics can negatively influence the expressivity of a genetically-induced enteric neuropathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345786PMC
http://dx.doi.org/10.1038/s41598-018-36967-zDOI Listing

Publication Analysis

Top Keywords

weaning age
12
tasht mouse
8
mouse model
8
model hirschsprung
8
hirschsprung disease
8
expressivity genetically-induced
8
increased proportion
8
proportion nitrergic
8
nitrergic neurons
8
post-weaning age
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!