Genome-wide association studies (GWAS) show that many common alleles confer risk for developing Alzheimer's disease (AD). These risk loci may contribute to MRI alterations in young individuals, preceding the clinical manifestations of AD. Prior evidence identifies vascular dysregulation as the earliest marker of disease progression. However, it remains unclear whether cerebrovascular function (measured via grey-matter cerebral blood flow (gmCBF)) is altered in young individuals with increased AD genetic risk. We establish relationships between gmCBF with APOE and AD polygenic risk score in a young cohort (N = 75; aged: 19-32). Genetic risk was assessed via a) possessing at least one copy of the APOE ɛ4 allele and b) a polygenic risk score (AD-PRS) estimated from AD-GWAS. We observed a reduction in gmCBF in APOE ɛ4 carriers and a negative relationship between AD-PRS and gmCBF. We further found regional reductions in gmCBF in individuals with higher AD-PRS across the frontal cortex (P < 0.05). Our findings suggest that a larger burden of AD common genetic risk alleles is associated with attenuated cerebrovascular function, during young adulthood. These results suggest that cerebral vasculature is a mechanism by which AD risk alleles confer susceptibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345995 | PMC |
http://dx.doi.org/10.1038/s41598-018-36820-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!