A broad effort is underway to improve the sensitivity of NMR through the use of dynamic nuclear polarization. Nitrogen vacancy (NV) centers in diamond offer an appealing platform because these paramagnetic defects can be optically polarized efficiently at room temperature. However, work thus far has been mainly limited to single crystals, because most polarization transfer protocols are sensitive to misalignment between the NV and magnetic field axes. Here we study the spin dynamics of NV-C pairs in the simultaneous presence of optical excitation and microwave frequency sweeps at low magnetic fields. We show that a subtle interplay between illumination intensity, frequency sweep rate, and hyperfine coupling strength leads to efficient, sweep-direction-dependent C spin polarization over a broad range of orientations of the magnetic field. In particular, our results strongly suggest that finely tuned, moderately coupled nuclear spins are key to the hyperpolarization process, which makes this mechanism distinct from other known dynamic polarization channels. These findings pave the route to applications where powders are intrinsically advantageous, including the hyperpolarization of target fluids in contact with the diamond surface or the use of hyperpolarized particles as contrast agents for in vivo imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377465PMC
http://dx.doi.org/10.1073/pnas.1811994116DOI Listing

Publication Analysis

Top Keywords

low magnetic
8
magnetic fields
8
magnetic field
8
dynamics frequency-swept
4
frequency-swept nuclear
4
nuclear spin
4
spin optical
4
optical pumping
4
pumping powdered
4
powdered diamond
4

Similar Publications

Electrochemiluminescence (ECL) is nowadays a powerful technique widely used in biosensing and imaging, offering high sensitivity and specificity for detecting and mapping biomolecules. Screen-printed electrodes (SPEs) offer a versatile and cost-effective platform for ECL applications due to their ease of fabrication, disposability, and suitability for large-scale production. This research introduces a novel method for improving the ECL characteristics of screen-printed carbon electrodes (SPCEs) through the application of CO laser treatment following fabrication.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is among the most challenging malignant brain tumors, making the development of new treatment strategies highly necessary. Glioma stem cells (GSCs) markedly contribute to drug resistance, radiation resistance, and tumor recurrence in GBM. The therapeutic potential of nanomaterials targeting GSCs in GBM urgently needs to be explored.

View Article and Find Full Text PDF

Background: People living with HIV (PLWH), especially immunological non-responders (INRs), may experience adverse neurologic events. However, the extent of neurological impairment in INRs remains uncertain. This study evaluates brain structure and function, immune dysregulation, and peripheral immunomarkers in INRs and immunological responders (IRs) among PLWH, classified according to immunological response criteria, within a clinical research setting.

View Article and Find Full Text PDF

The study of large-scale brain connectivity is increasingly adopting unsupervised approaches that derive low-dimensional spatial representations from high-dimensional connectomes, referred to as gradient analysis. When translating this approach to study interindividual variations in connectivity, one technical issue pertains to the selection of an appropriate group-level template to which individual gradients are aligned. Here, we compared different group-level template construction strategies using functional and structural connectome data from neurotypical controls and individuals with autism spectrum disorder (ASD) to identify between-group differences.

View Article and Find Full Text PDF

Understanding the differences between functional and structural human brain connectivity has been a focus of an extensive amount of neuroscience research. We employ a novel approach using the multinomial stochastic block model (MSBM) to explicitly extract components that characterize prominent differences across graphs. We analyze structural and functional connectomes derived from high-resolution diffusion-weighted MRI and fMRI scans of 250 Human Connectome Project subjects, analyzed at group connectivity level across 50 subjects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!