A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Needleless electrospun and centrifugal spun poly-ε-caprolactone scaffolds as a carrier for platelets in tissue engineering applications: A comparative study with hMSCs. | LitMetric

Needleless electrospun and centrifugal spun poly-ε-caprolactone scaffolds as a carrier for platelets in tissue engineering applications: A comparative study with hMSCs.

Mater Sci Eng C Mater Biol Appl

University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague, Třinecká 1024, 273 43, Buštěhrad, Czech Republic; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 40 Prague, Czech Republic. Electronic address:

Published: April 2019

The biofunctionalization of scaffolds for tissue engineering is crucial to improve the results of regenerative therapies. This study compared the effect of platelet-functionalization of 2D electrospun and 3D centrifugal spun scaffolds on the osteogenic potential of hMSCs. Scaffolds prepared from poly-ε-caprolactone, using electrospinning and centrifugal spinning technology, were functionalized using five different concentrations of platelets. Cell proliferation, metabolic activity and osteogenic differentiation were tested using hMSCs cultured in differential and non-differential medium. The porous 3D structure of the centrifugal spun fibers resulted in higher cell proliferation. Furthermore, the functionalization of the scaffolds with platelets resulted in a dose-dependent increase in cell metabolic activity, proliferation and production of an osteogenic marker - alkaline phosphatase. The effect was further promoted by culture in an osteogenic differential medium. The increase in combination of both platelets and osteogenic media shows an improved osteoinduction by platelets in environments rich in inorganic phosphate and ascorbate. Nevertheless, the results of the study showed that the optimal concentration of platelets for induction of hMSC osteogenesis is in the range of 900-3000 × 10 platelets/L. The study determines the potential of electrospun and centrifugal spun fibers with adhered platelets, for use in bone tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2018.12.069DOI Listing

Publication Analysis

Top Keywords

centrifugal spun
16
electrospun centrifugal
12
tissue engineering
12
cell proliferation
8
metabolic activity
8
spun fibers
8
platelets
7
centrifugal
5
scaffolds
5
osteogenic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!