A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Antibacterial bone substitute of hydroxyapatite and magnesium oxide to prevent dental and orthopaedic infections. | LitMetric

Antibacterial bone substitute of hydroxyapatite and magnesium oxide to prevent dental and orthopaedic infections.

Mater Sci Eng C Mater Biol Appl

i3S - Instituto de Investigação e Inovação em Saúde, U. Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica (INEB), U. Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, U. Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.

Published: April 2019

Bone substitutes market is growing due to the great demand for bone regenerative therapies. However, most of the actual products available in the market are incapable of inhibiting bacterial colonization, which can lead to tissue infection and possible implant failure. Some bone substitutes are combined with antibiotics to avoid the development of implant-associated infections, but the growing bacterial resistance to antibiotics often makes these products ineffective. Therefore, it is mandatory to develop new and alternative approaches. In the present work, a granular bone substitute of hydroxyapatite was produced, where different percentages of magnesium oxide were introduced. The antibacterial activity and biofilm formation was evaluated towards Staphylococcus aureus and Escherichia coli. The inclusion of magnesium oxide particles reduced bacterial growth and biofilm formation in a concentration-dependent manner, when compared with pure hydroxyapatite materials. Superior antibacterial activity and inhibition of biofilm formation was observed for Staphylococcus aureus with complete eradication when magnesium oxide percentages were equal or above 3 wt%. The materials cytotoxicity was assessed under ISO 10993-5:2009 guidance and through Live/Dead cell marking and none of the produced granules was cytotoxic. In addition, reactive oxygen species production was also evaluated and the results revealed that the exposure to the materials extracts did not induce the formation of reactive oxygen species by cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2018.12.059DOI Listing

Publication Analysis

Top Keywords

magnesium oxide
16
biofilm formation
12
bone substitute
8
substitute hydroxyapatite
8
bone substitutes
8
antibacterial activity
8
staphylococcus aureus
8
reactive oxygen
8
oxygen species
8
antibacterial bone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!