Evaluation of silymarin/duck's feet-derived collagen/hydroxyapatite sponges for bone tissue regeneration.

Mater Sci Eng C Mater Biol Appl

Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea. Electronic address:

Published: April 2019

Tissue engineered scaffolds, made of natural derived materials, have the potential to be used in bone regeneration fields due to the biocompatible and biodegradable features. In this study, we propose duck's feet-derived collagen (DC) sponges blended with hydroxyapatite (HAp), incorporated with different concentrations of silymarin (Smn), for improved bone regeneration. The morphological and structural properties of DC/HAp and DC/HAp loaded with 25, 50 and 100 μM of Smn sponges were analyzed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). In vitro evaluations were carried out on rabbit bone marrow stem cells (rBMSCs) using MTT assay for cell proliferation, ALP assay for osteogenic differentiation and reverse transcription-polymerase chain reaction (RT-PCR) for expression of mRNAs. For the evaluation of new bone formation in vivo, histological analysis and micro computed tomography (μCT) were used. Preliminary results, on Smn/DC/HAp morphology and mechanical properties, showed an interconnected porosity suitable for cells ingrowth and a higher compressive strength with the presence of Smn. Similarly, the cells proliferation and ALP activity modulation were positively influenced by the Smn content. Especially, the 100 μM Smn/DC/HAp sponge efficiently enhances the rBMSCs adhesion, growth and gene expression of osteogenic markers. The enhanced osteoinductive effects of sponges blended with Smn were confirmed using μ-CT and histological evaluations. In conclusion, results suggest that collagen sponges represent an excellent environment for cells growth and proliferation, while Smn plays an important role to improve materials osteogenic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2018.12.001DOI Listing

Publication Analysis

Top Keywords

bone regeneration
8
collagen sponges
8
sponges blended
8
proliferation alp
8
smn
6
sponges
5
bone
5
evaluation silymarin/duck's
4
silymarin/duck's feet-derived
4
feet-derived collagen/hydroxyapatite
4

Similar Publications

Preparation of Octacalcium Phosphate Thin Film with Exposing Reactive Crystalline Plane in Biological Fluid.

ACS Biomater Sci Eng

January 2025

Department of Materials Science and Bioengineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan.

Octacalcium phosphate (OCP) has been used as a bone replacement material due to its higher bone affinity. However, the mechanism of affinity has not been clarified. Since the 100 crystalline plane of OCP is closely involved in the biological reactions during osteogenesis, it is important to expose the 100 crystalline plane of OCP to the biological fluid to precisely measure the interfacial reactions.

View Article and Find Full Text PDF

Comparative evaluation of allograft particulate bone and cortical bone blocks combined with xenograft bone for labial bone defects in the aesthetic zone: a prospective cohort study.

BMC Oral Health

January 2025

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Implant Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Purpose: This study aimed to evaluate the osteogenic performance of allograft particulate bone and cortical bone blocks combined with xenograft under bovine pericardium membranes, for treating different degrees of labial bone defects in the aesthetic zone.

Materials And Methods: Twenty-four patients with bone defects were divided into two groups based on defect severity (Terheyden 1/4 and 2/4 groups). The Terheyden 1/4 group received granular bone grafts alone, while the Terheyden 2/4 group received cortical bone blocks combined with granular bone grafts.

View Article and Find Full Text PDF

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.

View Article and Find Full Text PDF

Background And Objectives: Gingivitis and periodontitis are common periodontal diseases that can significantly harm overall oral health, affecting the teeth and their supporting tissues, along with the surrounding anatomical structures, and if left untreated, leading to the total destruction of the alveolar bone and the connective tissues, tooth loss, and other more serious systemic health issues. Numerous studies have shown that propolis can help reduce gum inflammation, inhibit the growth of pathogenic bacteria, and promote tissue regeneration, but with varying degrees of success reported. For this reason, this comprehensive systematic review aims at finding out the truth concerning the efficacy of propolis mouthwashes in treating gingivitis and periodontitis, as its main objective.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!