Bacterial speck disease, caused by Pseudomonas syringae pv. tomato, is a persistent problem for fresh-market tomato growers in New York. Race 0 strains of this pathogen express either or both of the type III effectors AvrPto or AvrPtoB, which are recognized by tomato varieties expressing the Pto resistance gene. Pto encodes a protein kinase that activates the host immune system, thereby inhibiting bacterial multiplication and preventing disease development. Race 1 P. syringae pv. tomato strains do not express these effectors and are virulent on tomato whether or not the variety expresses Pto. Very few fresh-market tomato varieties have the Pto gene. We collected six P. syringae pv. tomato strains from naturally infected tomato plants across New York in 2015 and characterized them for their virulence and for the presence of specific effectors. In experiments conducted in the greenhouse, all strains reached population sizes in Pto-expressing tomato leaves that were intermediate between typical race 0 and race 1 strains. This phenotype has not been observed previously and suggests that the strains are recognized by Pto but such recognition is compromised by another P. syringae pv. tomato factor. The strains were found to encode avrPto, which is transcribed and translated. They also express avrPtoB although, as reported for other P. syringae pv. tomato strains, protein expression for this effector was not detectable. Deletion of avrPto from a representative New York strain allowed it to reach high populations in Pto-expressing tomato varieties, without compromising its virulence on susceptible tomato plants. Collectively, our data suggest that introgression of the Pto gene into fresh-market tomato varieties could enhance protection against extant P. syringae pv. tomato strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-03-17-0330-RE | DOI Listing |
Plant Dis
January 2025
USDA-ARS , Ithaca, United States.
Molecules
December 2024
Department of Mathematics & Computer Science, Alabama State University, Montgomery, AL 36104, USA.
Pests and diseases have caused significant problems since the domestication of crops, resulting in economic loss and hunger. To overcome these problems, synthetic pesticides were developed to control pests; however, there are significant detrimental side effects of synthetic pesticides on the environment and human health. There is an urgent need to develop safer and more sustainable pesticides.
View Article and Find Full Text PDFCell Rep
January 2025
State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:
Pseudomonas syringae deploys a type III secretion system (T3SS) to deliver effector proteins to facilitate infection of plant cells; however, little is known about the direct interactions between T3SS components and plants. Here, we show that the specialized lytic transglycosylase (SLT) domain of P. syringae pv.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Provincial Key University Laboratory of Plant-Microbe Interactions, College of Biology and Food, Shangqiu Normal University, Shangqiu, China.
Plant extracellular vesicles play a role in systemic acquired resistance by facilitating the transmission of immune signals between plant cells. Extracellular vesicles (EVs) play a critical role in facilitating the transfer of nucleic acids and proteins between plants and pathogens. However, the involvement of plant EVs in intercellular communication and their contribution to the regulation of physiological and pathological conditions in plants remains unclear.
View Article and Find Full Text PDFACS Nano
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
Induction of systemic acquired resistance (SAR) in plants to control bacterial diseases has become an effective solution to the problems of agrochemical resistance and ecological environment damage caused by long-term and large-scale use of traditional bactericides. However, current SAR-inducing compounds are often unable to rapidly eliminate pathogenic bacteria in infected plant tissues to prevent further spread of the disease, severely restraining the potential for extensive application in agriculture. Herein, we address the limitations by developing a series of visible-light-absorbing aggregation-induced emission photosensitizers suitable for agricultural use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!