Objectives: Overexpression of human trophoblast cell surface antigen 2 (Trop2) has been observed in many cancers; however, its roles in proliferation, apoptosis, migration, and invasion of hepatocellular carcinoma (HCC) remain unclear. Thus, this study aimed to characterize the function of Trop2 in HCC.

Methods: Trop2 protein expression was detected by immunohistochemistry in HCC tissues. Cell proliferation, apoptosis, and invasion were respectively measured by CCK-8, flow cytometry, Transwell, and wound healing assays. Expression levels of epithelial–mesenchymal transition-related proteins and Trop2 protein in HCC cell lines were detected by western blotting after silencing of the gene.

Results: Trop2 protein was highly expressed in HCC tissues and HCC cell lines. Trop2 mRNA and protein expression levels decreased in HepG2 and HCCLM3 cells after transfection with Trop2 siRNA. Silencing of the gene in HepG2 and HCCLM3 cells strongly inhibited cell proliferation and migration, while enhancing cell apoptosis. Investigation of the molecular mechanism revealed that silencing of the gene suppressed epithelial–mesenchymal transition of HepG2 and HCCLM3 cells.

Conclusions: The results of the present study may improve understanding of the role of Trop2 in regulation of cell proliferation and invasion, and may aid in development of novel therapy for HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421384PMC
http://dx.doi.org/10.1177/0300060518822913DOI Listing

Publication Analysis

Top Keywords

silencing gene
12
trop2 protein
12
cell proliferation
12
hepg2 hcclm3
12
proliferation invasion
8
invasion hepatocellular
8
hepatocellular carcinoma
8
trop2
8
proliferation apoptosis
8
protein expression
8

Similar Publications

The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.

View Article and Find Full Text PDF

[Gene editing is changing the treatment of hereditary diseases].

Lakartidningen

January 2025

docent, verksamhetschef, Karolinska centrum för cellterapi (KCC), Karolinska universitetssjukhuset, Stockholm; Karolins-ka ATMP-centrum; institutionen för laboratorie-medicin, Karolinska institutet.

Gene editing is a novel technology within gene therapy, which changes sequences in chromosomal DNA with precision. Even if there are alternative strategies, the Nobel Prize-winning CRISPR/Cas technology has become the dominating principle. During recent years base editing and prime editing, permitting editing without DNA double-strand breaks, have been developed.

View Article and Find Full Text PDF

Objectives: LOXL2, known as Lysyl oxidase-like 2, is classified as a lysyl oxidase (LOX) family member. However, its role and mechanism in endometrial cancer (EC) are unknown. Therefore, we aimed to investigate the potential role and mechanism of LOXL2 in EC.

View Article and Find Full Text PDF

Background: Neoadjuvant, endocrine, and targeted therapies have significantly improved the prognosis of breast cancer (BC). However, due to the high heterogeneity of cancer, some patients cannot benefit from existing treatments. Increasing evidence suggests that amino acids and their metabolites can alter the tumor malignant behavior through reshaping tumor microenvironment and regulation of immune cell function.

View Article and Find Full Text PDF

Modulating gene expression as a strategy to investigate thyroid cancer biology.

Arch Endocrinol Metab

January 2025

Universidade de São Paulo Instituto de Ciências Biomédicas Departamento de Biologia Celular e do Desenvolvimento São PauloSP Brasil Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil.

Modulating the expression of a coding or noncoding gene is a key tool in scientific research. This strategy has evolved methodologically due to advances in cloning approaches, modeling/algorithms in short hairpin RNA (shRNA) design for knockdown efficiency, and biochemical modifications in RNA synthesis, among other developments. Overall, these modifications have improved the ways to either reduce or induce the expression of a given gene with efficiency and facility for implementation in the lab.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!