Hydroiodic acid (HI)-treated reduced graphene oxide (rGO) ink/conductive polymeric composites are considered as promising cold cathodes in terms of high geometrical aspect ratio and low field emission (FE) threshold devices. In this study, four simple, cost-effective, solution-processed approaches for rGO-based field effect emitters were developed, optimized, and compared; rGO layers were coated on (a) n+ doped Si substrate, (b) n⁺-Si/P3HT:rGO, (c) n⁺-Si/PCDTBT:rGO, and (d) n⁺-Si/PCDTBT:PCBM:rGO composites, respectively. The fabricated emitters were optimized by tailoring the concentration ratios of their preparation and field emission characteristics. In a critical composite ratio, FE performance was remarkably improved compared to the pristine Si, as well as n⁺-Si/rGO field emitter. In this context, the impact of various materials, such as polymers, fullerene derivatives, as well as different solvents on rGO function reinforcement and consequently on FE performance upon rGO-based composites preparation was investigated. The field emitter consisted of n⁺-Si/PCDTBT:PCBM(80%):rGO(20%)/rGO displayed a field enhancement factor of ~2850, with remarkable stability over 20 h and low turn-on field in 0.6 V/μm. High-efficiency graphene-based FE devices realization paves the way towards low-cost, large-scale electron sources development. Finally, the contribution of this hierarchical, composite film morphology was evaluated and discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409712PMC
http://dx.doi.org/10.3390/nano9020137DOI Listing

Publication Analysis

Top Keywords

field emission
12
reduced graphene
8
graphene oxide
8
field
8
field emitter
8
updating role
4
role reduced
4
oxide ink
4
ink field
4
emission devices
4

Similar Publications

Background: The gradual extrusion of water-soluble intracellular components (such as proteins) from microalgae after pulsed electric field (PEF) treatment is a well-documented phenomenon. This could be utilized in biorefinery applications with lipid extraction taking place after such an 'incubation' period, i.e.

View Article and Find Full Text PDF

Charge transfer emission between π- and 4f-orbitals in a trivalent europium complex.

Commun Chem

January 2025

Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.

Photoinduced metal-to-ligand (or ligand-to-metal) charge-transfer (CT) states in metal complexes have been extensively studied toward the development of luminescent materials. However, previous studies have mainly focused on CT transitions between d- and π-orbitals. Herein, we report the demonstration of CT emission from 4f- to π-orbitals using a trivalent europium (Eu(III)) complex, supported by both experimental and theoretical analyses.

View Article and Find Full Text PDF

We present a nonlinear model of thermal field emission in resonant tunneling nanostructures with multiple barriers and potential wells, based on an accurate determination of the quantum potential shape and a rigorous solution of the Schrödinger equation, while considering thermal balance. The model applies to vacuum and semiconductor resonant tunnel diode and triode structures with two and three electrodes and to the general case of two-way tunneling with electrode heating. The complete balance of heat release and transfer is accounted for, with heat transport considered ballistic.

View Article and Find Full Text PDF

The gradual increase in the consumption of mineral nitrogen is leading to heightened levels of harmful air pollutants, particularly NO emissions from the agriculture sector. A potential solution to address the issues arising from the excessive use of urea in wheat is the substitution of conventional urea with nano urea. This study aimed to quantify the effects of nano urea, both independently and in conjunction with prilled urea, under various agroclimatic and sowing conditions in India.

View Article and Find Full Text PDF

Light-up lipid droplets dynamic behaviors using rationally designed carbon dots.

Talanta

January 2025

Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China. Electronic address:

Lipid droplets (LDs) are essential organelles used to store lipids and participate in cellular lipid metabolism. Imaging LDs is an intuitive approach to comprehend their biological functions. Herein, the LDs-targeted CDs (LD-CDs) featuring robust solvatochromic emission were elaborately designed by a Schiff base reaction using 1, 2-diamino-4-fluorobenzene, 3-dimethylaminophenol, and thiourea as precursors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!