Frog virus 3 (FV3) is the type species of the genus (family Iridoviridae). FV3 and FV3-like viruses are globally distributed infectious agents with the capacity to replicate in three vertebrate classes (teleosts, amphibians, and reptiles). At the cellular level, FV3 and FV3-like viruses can infect cells from virtually all vertebrate classes. To date, the cellular receptors that are involved in the FV3 entry process are unknown. Class A scavenger receptors (SR-As) are a family of evolutionarily conserved cell-surface receptors that bind a wide range of chemically distinct polyanionic ligands and can function as cellular receptors for other DNA viruses, including vaccinia virus and herpes simplex virus. The present study aimed to determine whether SR-As are involved in FV3 cellular entry. By using well-defined SR-A competitive and non-competitive ligand-blocking assays and absolute qPCR, we demonstrated that the SR-A competitive ligands drastically reduced the quantities of cell-associated viral loads in frog cells. Moreover, inducing the expression of a human SR-AI in an SR-A null cell line significantly increased FV3⁻cell association. Together, our results indicate that SR-As are utilized by FV3 during the cellular entry process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409810PMC
http://dx.doi.org/10.3390/v11020093DOI Listing

Publication Analysis

Top Keywords

cellular entry
12
class scavenger
8
scavenger receptors
8
frog virus
8
fv3 fv3-like
8
fv3-like viruses
8
vertebrate classes
8
cellular receptors
8
involved fv3
8
entry process
8

Similar Publications

Unlabelled: Zika virus (ZIKV) infection can lead to a variety of clinical outcomes, including severe congenital abnormalities. The phosphatidylserine (PS) receptors AXL and TIM-1 are recognized as critical entry factors for ZIKV . However, it remains unclear if and how ZIKV regulates these receptors during infection.

View Article and Find Full Text PDF

The recent landscape of RSV vaccine research.

Ther Adv Vaccines Immunother

January 2025

Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, OX1 2JD, UK.

Respiratory syncytial virus (RSV) causes a significant burden of acute respiratory illness across all ages, particularly for infants and older adults. Infants, especially those born prematurely or with underlying health conditions, face a high risk of severe RSV-related lower respiratory tract infections (LRTIs). Globally, RSV contributes to millions of LRTI cases annually, with a disproportionate burden in low- and middle-income countries (LMICs).

View Article and Find Full Text PDF

The recent outbreak of the coronavirus (COVID-19) pandemic, caused by the SARS-CoV-2 virus, has posed serious threats to global health systems. Although several directions have been put by the WHO for effective treatment, use of antibiotics, particularly ciprofloxacin, in suspected and acquired Covid-19 patients has raised an even more serious concern of antibiotic resistance. Ciprofloxacin has been reported to inhibit entry of SARS-CoV-2 into the host cells via interacting with the spike (S) protein.

View Article and Find Full Text PDF

[Expression of BTLA/HVEM axis in hematological and prospects for immune target therapy].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China. *Corresponding authors, E-mail:

Article Synopsis
  • BTLA is an inhibitory immune checkpoint that interacts with HVEM to regulate immune balance and maintain immune tolerance on the same cell, while also affecting different immune cells to suppress immune responses.
  • Dysregulation of the BTLA/HVEM interaction can lead to impaired immune cell function, allowing tumor cells to evade immune detection and progress.
  • Research indicates that BTLA and HVEM are often abnormally expressed in various tumors, making them potential targets for future immunotherapy approaches in treating hematologic malignancies.
View Article and Find Full Text PDF

Exploring the mechanisms of Yang Wei Shu granule for the treatment of chronic atrophic gastritis using UPLC-QTOF-MS/MS, network pharmacology, and cell experimentation.

J Ethnopharmacol

January 2025

College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012 Anhui, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012 Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012 Anhui, China; Anhui Engineering Research Center for Quality Improvement and Utilization of Genuine Chinese Medicinal Materials, Hefei 230012 Anhui, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012 Anhui, China. Electronic address:

Article Synopsis
  • YWSG is an herbal compound derived from ancient Chinese medicine used for treating chronic atrophic gastritis (CAG), which can lead to gastric cancer.
  • The study aims to identify the chemical composition of YWSG and understand its mechanisms of action through advanced analytical techniques and network pharmacology.
  • Results revealed 150 compounds in YWSG, with several target genes identified as potential therapeutic targets, and experiments indicated that YWSG does not harm certain immune cells while inhibiting nitric oxide production.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!