A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of straw amendment on selenium aging in soils: Mechanism and influential factors. | LitMetric

Effects of straw amendment on selenium aging in soils: Mechanism and influential factors.

Sci Total Environ

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China. Electronic address:

Published: March 2019

Soil dissolved organic matter (DOM) alters heavy metal availability, but whether straw amendment can manipulate soil selenium (Se) speciation and availability through DOM mineralization remains unclear. In this study, allochthonous maize straw and selenate were incubated together in four different soils for 1 y. The transformation and availability of DOM associated Se (DOM-Se) was investigated during aging. Results indicated that soil solution and soil particle surfaces were dominated by hexavalent hydrophilic acid-bound Se (Hy-Se). The amount of fulvic acid bound Se in soil solution (SOL-FA-Se) was higher than humic acid bound Se in soil solution (SOL-HA-Se), except in krasnozems, and mainly existed as hexavalent Se (Se(VI)). Tetravalent Se (Se(IV)) was the main valence state of FA-Se adsorbed on soil particle surfaces (EX-FA-Se) after 5 w of aging. The proportion of soil-available Se (SOL + EX-Se) decreased with increasing straw rate. However, under an application rate of 7500 kg·hm, soluble Se fraction (SOL-Se) reduction was minimal in acidic soils (18.7%-34.7%), and the organic bound Se fraction (OM-Se) was maximally promoted in alkaline soils (18.2%-39.1%). FA and HON could enhance the availability of Se in the soil solution and on particle surfaces of acidic soil with high organic matter content. While Se incorporation with HA could accelerate the fixation of Se into the solid phase of soil. Three mechanisms were involved in DOM-Se aging: (1) Reduction, ligand adsorption, and inner/outer-sphere complexation associated with the functional groups of straw-derived DOM, including hydroxyls, carboxyl, methyl, and aromatic phenolic compounds; (2) interconnection of EX-FA-Se between non-residual and residual Se pools; and (3) promotion by soil electrical conductivity (EC), clay, OM, and straw application. The dual effect of DOM on Se aging was highly reliant on the characteristics of the materials and soil properties. In conclusion, straw amendment could return selenium in soil and reduce soluble Se loss.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.12.021DOI Listing

Publication Analysis

Top Keywords

soil solution
16
soil
13
straw amendment
12
particle surfaces
12
organic matter
8
availability dom
8
soil particle
8
acid bound
8
bound soil
8
aging
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!