This work aims to compare the use of olive mill solid waste as substrate in pH-controlled fermentation at acid (pH = 5), neutral (uncontrolled, pH ≈ 7) and alkaline (pH = 9) operating pH levels. The results obtained in this study indicate that operating pH strongly affected the anaerobic microorganisms and, hence, different target compounds could be obtained by adjusting the operating pH. Fermentation at neutral pH resulted in the conversion of 93.5% of the fed chemical oxygen demand to methane. However, fermentations at pH 5 and 9 resulted in the inhibition of the methanogenic activity. At pH 9, volatile fatty acids reached a maximum concentration of 3.69 g O/L, where acetic acid represented up to 79.3% of the total volatile fatty acids. Unlike volatile fatty acid production, an optimal operation of fermentation at pH 5 could allow the recovery of phenols such as vanillin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.12.124DOI Listing

Publication Analysis

Top Keywords

volatile fatty
16
fatty acids
12
ph-controlled fermentation
8
olive mill
8
mill solid
8
solid waste
8
accumulation volatile
4
fatty
4
acids phenols
4
phenols ph-controlled
4

Similar Publications

Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium.

View Article and Find Full Text PDF

To explore the mechanism by which vinegar-processed Euphorbiae Pekinensis Radix regulates gut microbiota and reduces intestinal toxicity, this study aimed to identify key microbial communities related to vinegar-induced detoxification and verify their functions. Using a derivatization method, the study measured the content of short-chain fatty acids(SCFAs) in feces before and after vinegar-processing of Euphorbiae Pekinensis Radix. Combined with the results of previous gut microbiota sequencing, correlation analysis was used to identify key microbial communities related to SCFAs content.

View Article and Find Full Text PDF

Fatty liver impairs liver function and reduces productivity in dairy cows. Our previous in vivo findings demonstrated that branched-chain amino acids (BCAA) or branched-chain ketoacid (BCKA) improved liver function and lactation performance in dairy cows; however, the underlying mechanisms remain unclear. This study aimed to assess the impact of BCAA or BCKA supplementation on intracellular triglyceride (TG) accumulation, lipid metabolism, antioxidant response, and apoptosis in hepatocytes.

View Article and Find Full Text PDF

Effect of the Starchy Legume Source on the In Vitro Fermentation of the Fecal Microbiota from Normal-Weight and Obese Individuals.

Plant Foods Hum Nutr

January 2025

Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Col. San Isidro, Km 8.5 Carr. Yautepec-Jojutla, Yautepec, Morelos, C.P. 62731, México.

The relationship between the gut microbiota (GM) and the health of human beings has been a topic of growing interest in the last few years. Legumes are a rich source of indigestible carbohydrates, including resistant starch (RS), which are substrates of the GM. The aim of this study was to evaluate the effect of the indigestible fraction of legumes on the fecal microbiota of normal-weight (NW) and obese (O) donors.

View Article and Find Full Text PDF

The volatile profile of bee pollen samples from Central and Eastern Europe was investigated by headspace solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Sampling conditions were optimized for the extraction of volatiles. Pollen odorants were extracted with six different fiber coatings, five various extraction times, three diverse extraction temperatures and three differing desorption times.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!