Recently, concerns over heavy metal contamination of soil have grown. The application of sulfur has been recommended to enhance crop productivity and increase soil cadmium (Cd) immobilization. In this study, a pool experiment was conducted to investigate the effects of two sulfur sources and multiple treatment levels on rice growth and Cd accumulation. The two sulfur forms were elemental sulfur (S) and gypsum, both of which were applied at 0, 0.15, and 0.30 g S kg soil, for a total of five treatments. The results showed that both S and gypsum significantly increased rice biomass compared to the control (CK), and rice yield was increased 2.8-4.8 folds. The effect size was greater for gypsum than S. The application of S reduced the rice grain Cd concentration from 0.61 mg kg (CK) to 0.41-0.46 mg kg, while gypsum reduced the Cd concentration to 0.24-0.43 mg kg. The lower gypsum application level achieved the greatest reduction in rice grain Cd accumulation. This study further demonstrated that the application of S and gypsum led to a decrease in the labile Cd percentage and an increase in the stable Cd percentage. In bulk soil, iron and manganese oxide-bound Cd increased by 6.4-7.3% and 0.7-2.0% for the S and gypsum treatments, respectively. In the rhizosphere, residual Cd increased by >0.6%. Furthermore, this study found that sulfur application reduced Cd transfer from root to shoot, and significantly decreased rice grain Cd accumulation. These findings indicate that sulfur application to paddy soils can promote rice productivity and effectively remediate soil Cd contamination, with a greater effect by gypsum than S.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.12.057DOI Listing

Publication Analysis

Top Keywords

gypsum application
12
rice grain
12
gypsum
9
elemental sulfur
8
sulfur gypsum
8
rice
8
rice growth
8
greater gypsum
8
application reduced
8
grain accumulation
8

Similar Publications

Mechanical Properties and Durability Performance of Low Liquid Limit Soil Stabilized by Industrial Solid Waste.

Materials (Basel)

January 2025

Cangzhou Municipal Engineering Company Limited, Cangzhou 061000, China.

To improve the mechanical and durability properties of low liquid limit soil, an eco-friendly, all-solid, waste-based stabilizer (GSCFC) was proposed using five different industrial solid wastes: ground granulated blast-furnace slag (GGBS), steel slag (SS), coal fly ash (CFA), flue-gas desulfurization (FGD) gypsum, and carbide slag (CS). The mechanical and durability performance of GSCFC-stabilized soil were evaluated using unconfined compressive strength (UCS), California bearing ratio (CBR), and freeze-thaw and wet-dry cycles. The Rietveld method was employed to analyze the mineral phases in the GSCFC-stabilized soil.

View Article and Find Full Text PDF

Cotreatment strategy for hazardous arsenic-calcium residue and siderite tailings via arsenic fixation as scorodite.

J Environ Sci (China)

July 2025

Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

Siderite tailings is a potentially cost-free iron (Fe) source for arsenic (As) fixation in hazardous arsenic-calcium residues (ACR) as stable scorodite. In this study, a pure siderite reagent was employed to investigate the mechanism and optimal conditions for As fixation in ACR via scorodite formation, while the waste siderite tailings were used to further demonstrate the cotreatment method. The cotreatment method starts with an introduction of sulfuric acid to the ACR for As extraction and gypsum precipitation, and is followed by the addition of HO to oxidize As(III) in the extraction solutions and finalized by adding siderite with continuous air injection for scorodite formation.

View Article and Find Full Text PDF

As a typical ecologically fragile area, the Wudong Coal Mine region in Xinjiang generates large accumulations of coal gangue each year, which, in the alkaline soil environment, can easily lead to significant leaching and accumulation of As. This study developed a stabilizer (CFD) using cement, fly ash, and desulfurized gypsum to modify in-situ soil in the Xinjiang mining area, resulting in a modified solidified soil with excellent geotechnical performance and As stabilization capability. The study results showed that when CFD content exceeded 14.

View Article and Find Full Text PDF

Water quality management is a critical aspect of environmental sustainability, particularly in arid and semi-arid regions such as Iran where water scarcity is compounded by quality degradation. This study delves into the causal relationships influencing water quality, focusing on Total Dissolved Solids (TDS) as a primary indicator in the Karkheh River, southwest Iran. Utilizing a comprehensive dataset spanning 50 years (1968-2018), this research integrates Machine Learning (ML) techniques to examine correlations and infer causality among multiple parameters, including flow rate (Q), Sodium (Na), Magnesium (Mg), Calcium (Ca), Chloride (Cl), Sulfate (SO), Bicarbonates (HCO), and pH.

View Article and Find Full Text PDF

In the process of zinc hydrometallurgy, the content of fluorine in zinc sulfate solution directly affects the stripping of the zinc plate, which easily leads to the deterioration of working conditions. It not only has a serious impact on the entire zinc hydrometallurgical system but also causes huge economic losses. Especially in the process of zinc secondary resource utilization, the concentration of fluoride ions in the electrolyte exceeds the control standard of smelting enterprises, which has become a long-term technical challenge in the smelting industry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!