A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A procedure for human safety assessment during hydropeaking events. | LitMetric

A procedure for human safety assessment during hydropeaking events.

Sci Total Environ

Department of Engineering & Consulting, Alperia plc, Via Ressel 2, 39100 Bolzano, Italy. Electronic address:

Published: April 2019

A method for human safety assessment on a hydropeaked river reach is proposed and applied to an Alpine river. The human safety analysis during hydropeaking events is of particular interest because most of the Alpine watercourses are affected by hydropower plant energy production that cause rapid and frequent flow alterations (hydropeaking), but at the same time these watercourses are used by the population for recreational purposes. In literature, many studies have focused on the effect of hydropeaking on the biota but a study of the interaction between a hydropeaking wave and human safety does not yet exist. The proposed procedure is characterized by the combination of hydraulic numerical simulations to study the characteristics of the flow field with a human safety analysis and is applied to a case study in north Italy. Human safety can be assessed in two different ways: one is by studying human stability during hydropeaking events and the other is exploring the possibility of a "target person" leaving the reach during hydropeaking waves, adapting proper escape strategies. For the escape strategy Dijkstra's algorithm is used, where the distance between adjacent nodes is defined as the difficulty (penalty) of moving from one node to the other. For this reason, an original set of penalty functions is proposed that takes into account the steepness (slope between two adjacent computational cells), the roughness, and the product between the water depth and flow velocity. The results show that the difficulty in escaping increases with the flow rate. Moreover, the areas where the human safety is very low are mainly located in the central part of the watercourse. The present work proposes a possible investigational tool to evaluate and parameterize the risk for the population during hydropeaking events through quantitative indices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.01.158DOI Listing

Publication Analysis

Top Keywords

human safety
28
hydropeaking events
16
safety assessment
8
hydropeaking
8
safety analysis
8
safety
7
human
7
procedure human
4
assessment hydropeaking
4
events
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!