Construction of heterostructures with proper band alignment and effective transport and separation of photogenerated charges is highly expected for photocatalysis. In this work, Ni-doped SnO-SnS heterostructures (NiSnSO) are simply prepared by thermal oxidation of Ni-doped hierarchical SnS microspheres in the air. When applied for the photodegradation of organic contaminants, these NiSnSO exhibit excellent catalytic performance and stability due to the following advantages: (1) Ni doping leads to the enhancement of light harvesting of SnS in the visible light regions; (2) the formed heterojunctions promote the transport and separation of photogenerated electrons from SnS to SnO; (3) Ni-SnO quantum dots facilitate the enrichment of reactants, provide more reactive centers and accelerate product diffusion in the reactive centers; (4) the SnS hierarchical microspheres constituted by nanoplates provide abundant active sites, high structural void porosity and accessible inner surface to faciliate the catalytic reactions. As a result, the optimized NiSnSO can photodegrade 92.7% methyl orange within 80 min under the irradiation of simulated sunlight, greatly higher than those of pure SnS (29.8%) and Ni-doped SnS (52.1%). These results reveal that the combination of heteroatom doping and heterostructure fabrication is a very promising strategy to deliver nanomaterials for effectively photocatalytic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2019.01.009 | DOI Listing |
Nat Commun
January 2025
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, PR China.
Defect engineering can create various vacancy configurations in catalysts by finely tuning the local electronic and geometric structures of the active sites. However, achieving precise control and identification of these defects remains a significant challenge, and the origin of vacancy configurations in catalysts, especially clustered or associated ones, remains largely unknown. Herein, we successfully achieve the controllable fabrication and quantitative identification of triple O-Ti-O vacancy associate (VVV) in nanosized Ni-doped TiO.
View Article and Find Full Text PDFEnviron Technol
January 2025
Tekirdağ Metropolitan Municipality, TESKİ, Water and Sewerage Administration, Tekirdağ, Turkey.
This study explores variations in groundwater (GW) pH, conductivity, ammonium, iron, and manganese parameters to reveal prospective interactions having an impact on the dissolved metal concentrations. To this end, bivariate and partial correlation procedures were applied to the data to obtain incisive evaluation. Besides characterisation efforts, photocatalytic iron and manganese removal experiments were also carried out with Ni-doped TiO nano-composite thin films (TFs) on real GW samples.
View Article and Find Full Text PDFMolecules
December 2024
Department of Materials Engineering, Xuzhou College of Industrial Technology, Xuzhou 221140, China.
Metal-organic framework (MOF)-derived transition metal compounds and their composites have attracted great interest for applications in energy conversion and storage. In this work, hexagonal micro-prisms of Ni-doped CoTiO composited with amorphous carbon (NiCTO/C) were synthesized using Ti-Co-based MOFs as precursors. The experimental results indicate the substitutional doping of Ni for Co in CoTiO (CTO), leading to improved conductivity, as further confirmed by density functional theory calculations.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil. Electronic address:
Owing to fast SARS-CoV-2 mutations, biosensors employing antibodies as biorecognition elements have presented problems with sensitivity and accuracy. To face these challenges, antibodies can be replaced with the human angiotensin converting enzyme 2 (ACE-2), where it has been shown that the affinity between ACE-2 and the receptor binding domain (RBD) increases with the emergence of new variants. Herein, we report on Ni-doped ZnO nanorod electrochemical biosensors employing an ACE-2 peptide (IEEQAKTFLDKFNHEAEDLFYQS-NH) as a biorecognition element for detecting Spike (S) Wild-Type (WT) protein.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Materials and Process Development Laboratory, Department of Chemical Engineering, Birla Institute of Technology and Science, K. K. Birla Goa Campus, Pilani, Goa, 403726, India.
In the present study, combustion-synthesized TiO nanoparticles were wet impregnated with Ni, Co, and Ni-Co, respectively. The photocatalytic performance of synthesized catalysts was evaluated against Malachite Green dye. The synthesized materials were characterized for crystallite size, surface morphology, elemental composition, and band gap using X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and ultra-violet diffused reflectance spectroscopy, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!