Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Soybean seedling diseases are caused by Rhizoctonia solani and can be managed with seed-applied fungicides that belong to different chemistry classes. To provide a benchmark for assessing a decline in sensitivities to these fungicide classes, R. solani isolates collected prior to 2001 were evaluated for their sensitivities to succinate dehydrogenase inhibitor (SDHI) (penflufen and sedaxane) and demethylation inhibitor (DMI) fungicides (ipconazole and prothioconazole). The effective concentration of each fungicide that reduced mycelial growth by 50% (EC) was determined in vitro and compared with those of isolates recovered after 2011 from soybean plants with damping off and hypocotyl and root rot symptoms across different soybean-growing regions in the United States and Canada. All isolates, regardless of collection date, were extremely sensitive (EC < 1 μg/ml) to the SDHI fungicides but were either extremely sensitive or moderately sensitive (1 ≤ EC ≤ 10 μg/ml) to the DMI fungicides. For all four active ingredients, variation in sensitivities was observed within and among the different anastomosis groups composing both isolate groups. Isolates collected after 2011, which also had varying in vitro sensitivities, were further evaluated for in vivo sensitivity to the four fungicides in the greenhouse. In vitro fungicide sensitivity did not always coincide with fungicide efficacy in vivo because all isolates tested, regardless of in vitro sensitivity, were effectively controlled by the application of the seed treatment fungicides in the greenhouse. Overall, our results indicate no shift in sensitivity to the fungicide classes evaluated, although considerable variability in the sensitivities of the two groups of isolates examined was present. Based on this research, continued monitoring of fungicide sensitivities of R. solani populations should occur to determine whether sensitivities become further reduced in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-07-16-1015-RE | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!