Multishelled Hollow Structures of Yttrium Oxide for the Highly Selective and Ultrasensitive Detection of Methanol.

Small

Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, P. R. China.

Published: March 2019

Methanol is extremely harmful to human health, since it is oxidized slowly and can accumulate in the human body. Therefore, it is essential to develop a methanol gas sensing technology with high sensitivity and selectivity for use in environmental monitoring and healthcare. In this work, a simple and low-cost sensor based on a Y O multishelled hollow structure (YMSH) to selectively detect methanol with an ultrasensitive limit of detection (71 ppb) is developed. The unique multishelled hollow structure with a large surface area and exposed {222} facets makes an important contribution to the ultrasensitive detection of methanol, which is further confirmed by subsequent theoretical simulations. Moreover, in situ Fourier transform infrared spectra verify that CO is the final product, which indicates a high catalytic activity of the YMSHs toward methanol oxidation. Interestingly, the sensor can also be applied to liquor samples that are mixtures of ethanol, methanol, and water, which provides a facile way to detect methanol in wines. This sensor represents a unique and highly sensitive means to detect methanol, which has great promise for potential application in environmental monitoring and food safety inspection.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201804688DOI Listing

Publication Analysis

Top Keywords

multishelled hollow
12
detect methanol
12
methanol
9
ultrasensitive detection
8
detection methanol
8
environmental monitoring
8
hollow structure
8
hollow structures
4
structures yttrium
4
yttrium oxide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!