In this paper, a feature boosting network is proposed for estimating 3D hand pose and 3D body pose from a single RGB image. In this method, the features learned by the convolutional layers are boosted with a new long short-term dependence-aware (LSTD) module, which enables the intermediate convolutional feature maps to perceive the graphical long short-term dependency among different hand (or body) parts using the designed Graphical ConvLSTM. Learning a set of features that are reliable and discriminatively representative of the pose of a hand (or body) part is difficult due to the ambiguities, texture and illumination variation, and self-occlusion in the real application of 3D pose estimation. To improve the reliability of the features for representing each body part and enhance the LSTD module, we further introduce a context consistency gate (CCG) in this paper, with which the convolutional feature maps are modulated according to their consistency with the context representations. We evaluate the proposed method on challenging benchmark datasets for 3D hand pose estimation and 3D full body pose estimation. Experimental results show the effectiveness of our method that achieves state-of-the-art performance on both of the tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2019.2894422DOI Listing

Publication Analysis

Top Keywords

pose estimation
16
feature boosting
8
boosting network
8
hand pose
8
body pose
8
long short-term
8
lstd module
8
convolutional feature
8
feature maps
8
hand body
8

Similar Publications

Background: Urban arboviruses pose a significant global burden, particularly in tropical regions like Brazil. São Sebastião, a lower-middle-class urban area just 26 km from the Brazilian capital, is an endemic area for dengue. However, asymptomatic cases may obscure the actual extent of the disease.

View Article and Find Full Text PDF

Although sulfur-bearing minerals are valuable resources, they pose significant environmental risks to river ecosystems by releasing hazardous leachate. Accurately tracing these sources is crucial but challenging due to overlapping chemical signatures and pollutant transport dynamics in river systems. This study investigates seasonal and spatial variations in sulfate (SO) and trace element contributions in mining districts of the upper Nakdong River basin, South Korea.

View Article and Find Full Text PDF

Introduction: Although COVID-19 vaccines have been recommended for children and adolescents since 2021, suboptimal vaccination uptake has been documented. No previous systematic review/meta-analysis (SRMA) investigated parents' willingness to administer COVID-19 vaccines for their children in Saudi Arabia. Accordingly, this SRMA aimed to estimate parents' willingness to immunize their children with COVID-19 vaccines in Saudi Arabia and to identify reasons and determinants influencing parents' decisions.

View Article and Find Full Text PDF

Psychotic disorders, such as schizophrenia and bipolar disorder, pose significant diagnostic challenges with major implications on mental health. The measures of resting-state fMRI spatiotemporal complexity offer a powerful tool for identifying irregularities in brain activity. To capture global brain connectivity, we employed information-theoretic metrics, overcoming the limitations of pairwise correlation analysis approaches.

View Article and Find Full Text PDF

A novel machine learning based framework for developing composite digital biomarkers of disease progression.

Front Digit Health

January 2025

Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, NJ, United States.

Background: Current methods of measuring disease progression of neurodegenerative disorders, including Parkinson's disease (PD), largely rely on composite clinical rating scales, which are prone to subjective biases and lack the sensitivity to detect progression signals in a timely manner. Digital health technology (DHT)-derived measures offer potential solutions to provide objective, precise, and sensitive measures that address these limitations. However, the complexity of DHT datasets and the potential to derive numerous digital features that were not previously possible to measure pose challenges, including in selection of the most important digital features and construction of composite digital biomarkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!