Reduced physical performance reduces quality of life in patients with chronic obstructive pulmonary disease (COPD). Impaired physical performance is, in part, a consequence of reduced muscle mass and function, which is accompanied by mitochondrial dysfunction. We recently showed that miR-542-3p and miR-542-5p were elevated in a small cohort of COPD patients and more markedly in critical care patients. In mice, these microRNAs (miRNAs) promoted mitochondrial dysfunction suggesting that they would affect physical performance in patients with COPD, but we did not explore the association of these miRNAs with disease severity or physical performance further. We therefore quantified miR-542-3p/5p and mitochondrial rRNA expression in RNA extracted from quadriceps muscle of patients with COPD and determined their association with physical performance. As miR-542-3p inhibits ribosomal protein synthesis its ability to inhibit protein synthesis was also determined in vitro. Both miR-542-3p expression and -5p expression were elevated in patients with COPD (5-fold < 0.001) and the degree of elevation associated with impaired lung function (transfer capacity of the lung for CO in % and forced expiratory volume in 1 s in %) and physical performance (6-min walk distance in %). In COPD patients, the ratio of 12S rRNA to 16S rRNA was suppressed suggesting mitochondrial ribosomal stress and mitochondrial dysfunction and miR-542-3p/5p expression was inversely associated with mitochondrial gene expression and positively associated with p53 activity. miR-542-3p suppressed RPS23 expression and maximal protein synthesis in vitro. Our data show that miR-542-3p and -5p expression is elevated in COPD patients and may suppress physical performance at least in part by inhibiting mitochondrial and cytoplasmic ribosome synthesis and suppressing protein synthesis. miR-542-3p and -5p are elevated in the quadriceps muscle of patients with chronic obstructive pulmonary disease (COPD) in proportion to the severity of their lung disease. These microRNAs inhibit mitochondrial and cytoplasmic protein synthesis suggesting that they contribute to impaired exercise performance in COPD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6551227 | PMC |
http://dx.doi.org/10.1152/japplphysiol.00882.2018 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India.
In the past decade, significant efforts have been made to develop efficient half-Heusler (HH) based thermoelectric (TE) materials. However, their practical applications remain limited due to various challenges occurring during the fabrication of TE devices, particularly the development of stable contacts with low interfacial resistance. In this study, we have made an effort to explore a stable contact material with low interfacial resistance for an n-type TiCoSb-based TE material, specifically TiNbCoSbBi as a proof of concept, using a straightforward facile synthesis route of spark plasma sintering.
View Article and Find Full Text PDFMethodsX
June 2025
Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka, 76100 Melaka, Malaysia.
This study explores the possibility of integrating and retrieving heterogenous data across platforms by using ontology graph databases to enhance educational insights and enabling advanced data-driven decision-making. Motivated by some of the well-known universities and other Higher Education Institutions ontology, this study improvises the existing entities and introduces new entities in order to tackle a new topic identified from the preliminary interview conducted in the study to cover the study objective. The paper also proposes an innovative ontology, referred to as Student Performance and Course, to enhance resource management and evaluation mechanisms on course, students, and MOOC performance by the faculty.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary.
Mucosal membranes with strong variability in their viscoelastic properties line numerous organs and are often targeted by mucoadhesive formulations, e.g., highly swellable hydroxypropylmethylcellulose (HPMC) and slightly cross-linked poly(acrylic acid) (PAA) tablets.
View Article and Find Full Text PDFMater Today Bio
February 2025
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
Bacterial infections significantly threaten human health, leading to severe diseases and complications across multiple systems and organs. Antibiotics remain the primary treatment strategy for these infections. However, the growing resistance of bacteria to conventional antibiotics underscores the urgent need for safe and effective alternative treatments.
View Article and Find Full Text PDFWearable Technol
November 2024
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
The objectives of this case series study were to test whether an elastic back exosuit could increase a wearer's endurance when lifting heavy objects and to assess whether lifting more cancels out the exosuit's risk reduction benefits. We found that 88% of participants increased their lifting repetitions while wearing an exosuit, with endurance increases ranging from 28 to 75%. We then used these empirical data with an ergonomic assessment model based on fatigue failure principles to estimate the effects on cumulative back damage (an indicator of low back disorder risk) when an exosuit is worn and more lifts are performed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!