A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced Drug Delivery by Nanoscale Integration of a Nitric Oxide Donor To Induce Tumor Collagen Depletion. | LitMetric

Enhanced Drug Delivery by Nanoscale Integration of a Nitric Oxide Donor To Induce Tumor Collagen Depletion.

Nano Lett

Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology and Chemical Biology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road , Shanghai 200025 , China.

Published: February 2019

Delivery of therapeutics into the solid tumor microenvironment is a major challenge for cancer nanomedicine. Administration of certain exogenous enzymes which deplete tumor stromal components has been proposed as a method to improve drug delivery. Here we present a protein-free collagen depletion strategy for drug delivery into solid tumors, based on activating endogenous matrix metalloproteinases (MMP-1 and -2) using nitric oxide (NO). Mesoporous silica nanoparticles (MSN) were loaded with a chemotherapeutic agent, doxorubicin (DOX) as well as a NO donor ( S-nitrosothiol) to create DN@MSN. The loaded NO results in activation of MMPs which degrade collagen in the tumor extracellular matrix. Administration of DN@MSN resulted in enhanced tumor penetration of both the nanovehicle and cargo (DOX), leading to significantly improved antitumor efficacy with no overt toxicity observed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.8b04236DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
nitric oxide
8
collagen depletion
8
tumor
5
enhanced drug
4
delivery
4
delivery nanoscale
4
nanoscale integration
4
integration nitric
4
oxide donor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!